Abstract:Diffusion models (DMs) have achieved promising performance in image restoration but haven't been explored for stereo images. The application of DM in stereo image restoration is confronted with a series of challenges. The need to reconstruct two images exacerbates DM's computational cost. Additionally, existing latent DMs usually focus on semantic information and remove high-frequency details as redundancy during latent compression, which is precisely what matters for image restoration. To address the above problems, we propose a high-frequency aware diffusion model, DiffStereo for stereo image restoration as the first attempt at DM in this domain. Specifically, DiffStereo first learns latent high-frequency representations (LHFR) of HQ images. DM is then trained in the learned space to estimate LHFR for stereo images, which are fused into a transformer-based stereo image restoration network providing beneficial high-frequency information of corresponding HQ images. The resolution of LHFR is kept the same as input images, which preserves the inherent texture from distortion. And the compression in channels alleviates the computational burden of DM. Furthermore, we devise a position encoding scheme when integrating the LHFR into the restoration network, enabling distinctive guidance in different depths of the restoration network. Comprehensive experiments verify that by combining generative DM and transformer, DiffStereo achieves both higher reconstruction accuracy and better perceptual quality on stereo super-resolution, deblurring, and low-light enhancement compared with state-of-the-art methods.
Abstract:We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/
Abstract:Currently, the success of large language models (LLMs) illustrates that a unified multitasking approach can significantly enhance model usability, streamline deployment, and foster synergistic benefits across different tasks. However, in computer vision, while text-to-image (T2I) models have significantly improved generation quality through scaling up, their framework design did not initially consider how to unify with downstream tasks, such as various types of editing. To address this, we introduce DreamOmni, a unified model for image generation and editing. We begin by analyzing existing frameworks and the requirements of downstream tasks, proposing a unified framework that integrates both T2I models and various editing tasks. Furthermore, another key challenge is the efficient creation of high-quality editing data, particularly for instruction-based and drag-based editing. To this end, we develop a synthetic data pipeline using sticker-like elements to synthesize accurate, high-quality datasets efficiently, which enables editing data scaling up for unified model training. For training, DreamOmni jointly trains T2I generation and downstream tasks. T2I training enhances the model's understanding of specific concepts and improves generation quality, while editing training helps the model grasp the nuances of the editing task. This collaboration significantly boosts editing performance. Extensive experiments confirm the effectiveness of DreamOmni. The code and model will be released.
Abstract:The rapid advancement of deepfake technologies has sparked widespread public concern, particularly as face forgery poses a serious threat to public information security. However, the unknown and diverse forgery techniques, varied facial features and complex environmental factors pose significant challenges for face forgery analysis. Existing datasets lack descriptions of these aspects, making it difficult for models to distinguish between real and forged faces using only visual information amid various confounding factors. In addition, existing methods do not yield user-friendly and explainable results, complicating the understanding of the model's decision-making process. To address these challenges, we introduce a novel Open-World Face Forgery Analysis VQA (OW-FFA-VQA) task and the corresponding benchmark. To tackle this task, we first establish a dataset featuring a diverse collection of real and forged face images with essential descriptions and reliable forgery reasoning. Base on this dataset, we introduce FFAA: Face Forgery Analysis Assistant, consisting of a fine-tuned Multimodal Large Language Model (MLLM) and Multi-answer Intelligent Decision System (MIDS). By integrating hypothetical prompts with MIDS, the impact of fuzzy classification boundaries is effectively mitigated, enhancing the model's robustness. Extensive experiments demonstrate that our method not only provides user-friendly explainable results but also significantly boosts accuracy and robustness compared to previous methods.
Abstract:Integrated sensing and communication (ISAC) emerges as an essential technique for overcoming spectrum congestion. However, the performance of traditional ISAC systems with fixed-position-antennas (FPA) is limited due to insufficient spatial degree of freedom (DoF) exploration. Recently, fluid antenna (FA) with reconfigurable antenna position is developed to enhance the sensing and communication performance by reshaping the channel. This paper investigates an FA-enhanced ISAC system where a base station is equipped with multiple FAs to communicate with multiple single-antenna users and with FPAs to sense a point target. In this paper, we consider both perfect and imperfect channel state information (CSI) of the communication channel and sensing channel. In two cases, we focus on the maximization of the sensing signal-to-noise (SNR) by optimizing the positions of FAs and the dual-functional beamforming under the constraints of the FA moving region, the minimum FA distance and the minimum signal-to-interference-plus-noise (SINR) per user. Specifically, for the ideal case of perfect CSI, an iterative alternating optimization (AO) algorithm is proposed to tackle the formulated problem where the dual-functional beamforming and the FA positions are obtained via semidefinite relaxation (SDR) and successive convex approximation (SCA) techniques. Then, for the imperfect CSI case, we propose an AO-based iterative algorithm where $\mathcal{S}-$Procedure and SCA are applied to obtain the dual-functional beamforming and the FA positions. Furthermore, we analytically and numerically prove the convergence of the proposed algorithms. Numerical results demonstrate the notable gains of the proposed algorithms in the respective cases.
Abstract:Implicit neural representations (INRs) have significantly advanced the field of arbitrary-scale super-resolution (ASSR) of images. Most existing INR-based ASSR networks first extract features from the given low-resolution image using an encoder, and then render the super-resolved result via a multi-layer perceptron decoder. Although these approaches have shown promising results, their performance is constrained by the limited representation ability of discrete latent codes in the encoded features. In this paper, we propose a novel ASSR method named GaussianSR that overcomes this limitation through 2D Gaussian Splatting (2DGS). Unlike traditional methods that treat pixels as discrete points, GaussianSR represents each pixel as a continuous Gaussian field. The encoded features are simultaneously refined and upsampled by rendering the mutually stacked Gaussian fields. As a result, long-range dependencies are established to enhance representation ability. In addition, a classifier is developed to dynamically assign Gaussian kernels to all pixels to further improve flexibility. All components of GaussianSR (i.e., encoder, classifier, Gaussian kernels, and decoder) are jointly learned end-to-end. Experiments demonstrate that GaussianSR achieves superior ASSR performance with fewer parameters than existing methods while enjoying interpretable and content-aware feature aggregations.
Abstract:This paper investigates a fluid antenna (FA) enhanced integrated sensing and communication (ISAC) system consisting of a base station (BS), multiple single-antenna communication users, and one point target, where the BS is equipped with FAs to enhance both the communication and sensing performance. First, we formulate a problem that maximizes the radar signal-to-noise ratio (SNR) by jointly optimizing the FAs' positions and transmit beamforming matrix. Then, to tackle this highly non-convex problem, we present efficient algorithms by using alternating optimization (AO), successive convex approximation (SCA), and semi-definite relaxation (SDR). Numerical results demonstrate the convergence behavior and effectiveness of the proposed algorithm.
Abstract:Degraded broadcast channels (DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. In the proposed method, the transmitter extracts semantic features for two users separately. It then effectively fuses these semantic features for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance the performance between the two users. Considering the different channel state information (CSI) of both users over DBC, a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel. Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
Abstract:Deep learning-based denoiser has been the focus of recent development on image denoising. In the past few years, there has been increasing interest in developing self-supervised denoising networks that only require noisy images, without the need for clean ground truth for training. However, a performance gap remains between current self-supervised methods and their supervised counterparts. Additionally, these methods commonly depend on assumptions about noise characteristics, thereby constraining their applicability in real-world scenarios. Inspired by the properties of the Frobenius norm expansion, we discover that incorporating a trace term reduces the optimization goal disparity between self-supervised and supervised methods, thereby enhancing the performance of self-supervised learning. To exploit this insight, we propose a trace-constraint loss function and design the low-trace adaptation Noise2Noise (LoTA-N2N) model that bridges the gap between self-supervised and supervised learning. Furthermore, we have discovered that several existing self-supervised denoising frameworks naturally fall within the proposed trace-constraint loss as subcases. Extensive experiments conducted on natural and confocal image datasets indicate that our method achieves state-of-the-art performance within the realm of zero-shot self-supervised image denoising approaches, without relying on any assumptions regarding the noise.
Abstract:Image restoration is a critical task in low-level computer vision, aiming to restore high-quality images from degraded inputs. Various models, such as convolutional neural networks (CNNs), generative adversarial networks (GANs), transformers, and diffusion models (DMs), have been employed to address this problem with significant impact. However, CNNs have limitations in capturing long-range dependencies. DMs require large prior models and computationally intensive denoising steps. Transformers have powerful modeling capabilities but face challenges due to quadratic complexity with input image size. To address these challenges, we propose VmambaIR, which introduces State Space Models (SSMs) with linear complexity into comprehensive image restoration tasks. We utilize a Unet architecture to stack our proposed Omni Selective Scan (OSS) blocks, consisting of an OSS module and an Efficient Feed-Forward Network (EFFN). Our proposed omni selective scan mechanism overcomes the unidirectional modeling limitation of SSMs by efficiently modeling image information flows in all six directions. Furthermore, we conducted a comprehensive evaluation of our VmambaIR across multiple image restoration tasks, including image deraining, single image super-resolution, and real-world image super-resolution. Extensive experimental results demonstrate that our proposed VmambaIR achieves state-of-the-art (SOTA) performance with much fewer computational resources and parameters. Our research highlights the potential of state space models as promising alternatives to the transformer and CNN architectures in serving as foundational frameworks for next-generation low-level visual tasks.