This paper investigates a fluid antenna (FA) enhanced integrated sensing and communication (ISAC) system consisting of a base station (BS), multiple single-antenna communication users, and one point target, where the BS is equipped with FAs to enhance both the communication and sensing performance. First, we formulate a problem that maximizes the radar signal-to-noise ratio (SNR) by jointly optimizing the FAs' positions and transmit beamforming matrix. Then, to tackle this highly non-convex problem, we present efficient algorithms by using alternating optimization (AO), successive convex approximation (SCA), and semi-definite relaxation (SDR). Numerical results demonstrate the convergence behavior and effectiveness of the proposed algorithm.