Abstract:The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain.
Abstract:Traditional methods for reasoning segmentation rely on supervised fine-tuning with categorical labels and simple descriptions, limiting its out-of-domain generalization and lacking explicit reasoning processes. To address these limitations, we propose Seg-Zero, a novel framework that demonstrates remarkable generalizability and derives explicit chain-of-thought reasoning through cognitive reinforcement. Seg-Zero introduces a decoupled architecture consisting of a reasoning model and a segmentation model. The reasoning model interprets user intentions, generates explicit reasoning chains, and produces positional prompts, which are subsequently used by the segmentation model to generate precious pixel-level masks. We design a sophisticated reward mechanism that integrates both format and accuracy rewards to effectively guide optimization directions. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Seg-Zero achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Experiments show that Seg-Zero-7B achieves a zero-shot performance of 57.5 on the ReasonSeg benchmark, surpassing the prior LISA-7B by 18\%. This significant improvement highlights Seg-Zero's ability to generalize across domains while presenting an explicit reasoning process. Code is available at https://github.com/dvlab-research/Seg-Zero.
Abstract:We present Magic Mirror, a framework for generating identity-preserved videos with cinematic-level quality and dynamic motion. While recent advances in video diffusion models have shown impressive capabilities in text-to-video generation, maintaining consistent identity while producing natural motion remains challenging. Previous methods either require person-specific fine-tuning or struggle to balance identity preservation with motion diversity. Built upon Video Diffusion Transformers, our method introduces three key components: (1) a dual-branch facial feature extractor that captures both identity and structural features, (2) a lightweight cross-modal adapter with Conditioned Adaptive Normalization for efficient identity integration, and (3) a two-stage training strategy combining synthetic identity pairs with video data. Extensive experiments demonstrate that Magic Mirror effectively balances identity consistency with natural motion, outperforming existing methods across multiple metrics while requiring minimal parameters added. The code and model will be made publicly available at: https://github.com/dvlab-research/MagicMirror/
Abstract:Diffusion models have demonstrated remarkable and robust abilities in both image and video generation. To achieve greater control over generated results, researchers introduce additional architectures, such as ControlNet, Adapters and ReferenceNet, to integrate conditioning controls. However, current controllable generation methods often require substantial additional computational resources, especially for video generation, and face challenges in training or exhibit weak control. In this paper, we propose ControlNeXt: a powerful and efficient method for controllable image and video generation. We first design a more straightforward and efficient architecture, replacing heavy additional branches with minimal additional cost compared to the base model. Such a concise structure also allows our method to seamlessly integrate with other LoRA weights, enabling style alteration without the need for additional training. As for training, we reduce up to 90% of learnable parameters compared to the alternatives. Furthermore, we propose another method called Cross Normalization (CN) as a replacement for Zero-Convolution' to achieve fast and stable training convergence. We have conducted various experiments with different base models across images and videos, demonstrating the robustness of our method.
Abstract:Continual learning has gained increasing importance as it facilitates the acquisition and refinement of scalable knowledge and skills in language models. However, existing methods typically encounter strict limitations and challenges in real-world scenarios, such as reliance on experience replay, optimization constraints, and inference task-ID. In this study, we introduce the Scalable Language Model (SLM) to overcome these limitations within a more challenging and generalized setting, representing a significant advancement toward practical applications for continual learning. Specifically, we propose the Joint Adaptive Re-Parameterization (JARe), integrated with Dynamic Task-related Knowledge Retrieval (DTKR), to enable adaptive adjustment of language models based on specific downstream tasks. This approach leverages the task distribution within the vector space, aiming to achieve a smooth and effortless continual learning process. Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting. Moreover, while prior research primarily focused on a single task type such as classification, our study goes beyond, with the large language model, i.e., LLaMA-2, to explore the effects across diverse domains and task types, such that a single language model can be decently scaled to broader applications.
Abstract:The booming of 3D recognition in the 2020s began with the introduction of point cloud transformers. They quickly overwhelmed sparse CNNs and became state-of-the-art models, especially in 3D semantic segmentation. However, sparse CNNs are still valuable networks, due to their efficiency treasure, and ease of application. In this work, we reexamine the design distinctions and test the limits of what a sparse CNN can achieve. We discover that the key credit to the performance difference is adaptivity. Specifically, we propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap. This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module to greatly enhance the adaptivity of sparse CNNs at minimal computational cost. Without any self-attention modules, OA-CNNs favorably surpass point transformers in terms of accuracy in both indoor and outdoor scenes, with much less latency and memory cost. Notably, it achieves 76.1%, 78.9%, and 70.6% mIoU on ScanNet v2, nuScenes, and SemanticKITTI validation benchmarks respectively, while maintaining at most 5x better speed than transformer counterparts. This revelation highlights the potential of pure sparse CNNs to outperform transformer-related networks.
Abstract:Self-supervised 3D representation learning aims to learn effective representations from large-scale unlabeled point clouds. Most existing approaches adopt point discrimination as the pretext task, which assigns matched points in two distinct views as positive pairs and unmatched points as negative pairs. However, this approach often results in semantically identical points having dissimilar representations, leading to a high number of false negatives and introducing a "semantic conflict" problem. To address this issue, we propose GroupContrast, a novel approach that combines segment grouping and semantic-aware contrastive learning. Segment grouping partitions points into semantically meaningful regions, which enhances semantic coherence and provides semantic guidance for the subsequent contrastive representation learning. Semantic-aware contrastive learning augments the semantic information extracted from segment grouping and helps to alleviate the issue of "semantic conflict". We conducted extensive experiments on multiple 3D scene understanding tasks. The results demonstrate that GroupContrast learns semantically meaningful representations and achieves promising transfer learning performance.
Abstract:While LISA effectively bridges the gap between segmentation and large language models to enable reasoning segmentation, it poses certain limitations: unable to distinguish different instances of the target region, and constrained by the pre-defined textual response formats. In this work, we introduce LISA++, an update to the existing LISA model, focusing on improving core functionalities while keeping the base architecture intact. The main enhancements in LISA++ include: \textbf{1) Enhanced Segmentation}: The instance segmentation ability has been added, providing a more detailed scene analysis along with the existing multi-region semantic segmentation. \textbf{2) More Natural Conversation}: Improved capability for multi-turn dialogue, with the ability to incorporate segmentation results directly into text responses, i.e., Segmentation in Dialogue (SiD). These improvements are achieved by curating the existing samples of generic segmentation datasets, aimed specifically at enhancing the segmentation and conversational skills without structural change and additional data sources. Comparative analysis with the original LISA model shows significant advancements in these areas, positioning LISA++ as a notable upgrade in visual understanding and interaction. LISA++'s adaptability and improved features highlight the versatility of the mask-as-embedding paradigm proposed by LISA, and the potential as a foundational model for diverse applications.
Abstract:This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation. Multi-modal LLMs empower multi-modality understanding with the capability of semantic generation yet bring less explainability and heavier reliance on prompt contents due to their autoregressive generative nature. While manipulating prompt formats could improve outputs, designing specific and precise prompts per task can be challenging and ineffective. To tackle this issue, we introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation. Motivated by the classifier-free diffusion guidance, we form regular and unconditional context pairs based on highlighted tokens, demonstrating that the autoregressive generation in models can be guided in a classifier-free way. Notably, we find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs. Our approach is compatible with current LLMs and VLMs, achieving impressive customized generation results without training. Experiments confirm its effectiveness in focusing on input contexts and generating reliable content. Without tuning on LLaVA-v1.5, our method secured 69.5 in the MMBench test and 1552.5 in MME-perception. The code is available at: https://github.com/dvlab-research/Prompt-Highlighter/
Abstract:The rapid advancement of deep learning models often attributes to their ability to leverage massive training data. In contrast, such privilege has not yet fully benefited 3D deep learning, mainly due to the limited availability of large-scale 3D datasets. Merging multiple available data sources and letting them collaboratively train a single model is a potential solution. However, due to the large domain gap between 3D point cloud datasets, such mixed supervision could adversely affect the model's performance and lead to degenerated performance (i.e., negative transfer) compared to single-dataset training. In view of this challenge, we introduce Point Prompt Training (PPT), a novel framework for multi-dataset synergistic learning in the context of 3D representation learning that supports multiple pre-training paradigms. Based on this framework, we propose Prompt-driven Normalization, which adapts the model to different datasets with domain-specific prompts and Language-guided Categorical Alignment that decently unifies the multiple-dataset label spaces by leveraging the relationship between label text. Extensive experiments verify that PPT can overcome the negative transfer associated with synergistic learning and produce generalizable representations. Notably, it achieves state-of-the-art performance on each dataset using a single weight-shared model with supervised multi-dataset training. Moreover, when served as a pre-training framework, it outperforms other pre-training approaches regarding representation quality and attains remarkable state-of-the-art performance across over ten diverse downstream tasks spanning both indoor and outdoor 3D scenarios.