Abstract:Jailbreaking attacks show how Large Language Models (LLMs) can be tricked into generating harmful outputs using malicious prompts. To prevent these attacks, other LLMs are often used as judges to evaluate the harmfulness of the generated content. However, relying on LLMs as judges can introduce biases into the detection process, which in turn compromises the effectiveness of the evaluation. In this paper, we show that Judge LLMs, like other LLMs, are also affected by token segmentation bias. This bias occurs when tokens are split into smaller sub-tokens, altering their embeddings. This makes it harder for the model to detect harmful content. Specifically, this bias can cause sub-tokens to differ significantly from the original token in the embedding space, leading to incorrect "safe" predictions for harmful content. To exploit this bias in Judge LLMs, we introduce the Emoji Attack -- a method that places emojis within tokens to increase the embedding differences between sub-tokens and their originals. These emojis create new tokens that further distort the token embeddings, exacerbating the bias. To counter the Emoji Attack, we design prompts that help LLMs filter out unusual characters. However, this defense can still be bypassed by using a mix of emojis and other characters. The Emoji Attack can also be combined with existing jailbreaking prompts using few-shot learning, which enables LLMs to generate harmful responses with emojis. These responses are often mistakenly labeled as "safe" by Judge LLMs, allowing the attack to slip through. Our experiments with six state-of-the-art Judge LLMs show that the Emoji Attack allows 25\% of harmful responses to bypass detection by Llama Guard and Llama Guard 2, and up to 75\% by ShieldLM. These results highlight the need for stronger Judge LLMs to address this vulnerability.
Abstract:Sign languages, used by around 70 million Deaf individuals globally, are visual languages that convey visual and contextual information. Current methods in vision-based sign language recognition (SLR) and translation (SLT) struggle with dialogue scenes due to limited dataset diversity and the neglect of contextually relevant information. To address these challenges, we introduce SCOPE (Sign language Contextual Processing with Embedding from LLMs), a novel context-aware vision-based SLR and SLT framework. For SLR, we utilize dialogue contexts through a multi-modal encoder to enhance gloss-level recognition. For subsequent SLT, we further fine-tune a Large Language Model (LLM) by incorporating prior conversational context. We also contribute a new sign language dataset that contains 72 hours of Chinese sign language videos in contextual dialogues across various scenarios. Experimental results demonstrate that our SCOPE framework achieves state-of-the-art performance on multiple datasets, including Phoenix-2014T, CSL-Daily, and our SCOPE dataset. Moreover, surveys conducted with participants from the Deaf community further validate the robustness and effectiveness of our approach in real-world applications. Both our dataset and code will be open-sourced to facilitate further research.
Abstract:Theoretical linguists have suggested that some languages (e.g., Chinese and Japanese) are "cooler" than other languages based on the observation that the intended meaning of phrases in these languages depends more on their contexts. As a result, many expressions in these languages are shortened, and their meaning is inferred from the context. In this paper, we focus on the omission of the plurality and definiteness markers in Chinese noun phrases (NPs) to investigate the predictability of their intended meaning given the contexts. To this end, we built a corpus of Chinese NPs, each of which is accompanied by its corresponding context, and by labels indicating its singularity/plurality and definiteness/indefiniteness. We carried out corpus assessments and analyses. The results suggest that Chinese speakers indeed drop plurality and definiteness markers very frequently. Building on the corpus, we train a bank of computational models using both classic machine learning models and state-of-the-art pre-trained language models to predict the plurality and definiteness of each NP. We report on the performance of these models and analyse their behaviours.
Abstract:Recent advancements in large language models (LLMs) have shown promising results across a variety of natural language processing (NLP) tasks. The application of LLMs to specific domains, such as biomedicine, has achieved increased attention. However, most biomedical LLMs focus on enhancing performance in monolingual biomedical question answering and conversation tasks. To further investigate the effectiveness of the LLMs on diverse biomedical NLP tasks in different languages, we present Taiyi, a bilingual (English and Chinese) fine-tuned LLM for diverse biomedical tasks. In this work, we first curated a comprehensive collection of 140 existing biomedical text mining datasets across over 10 task types. Subsequently, a two-stage strategy is proposed for supervised fine-tuning to optimize the model performance across varied tasks. Experimental results on 13 test sets covering named entity recognition, relation extraction, text classification, question answering tasks demonstrate Taiyi achieves superior performance compared to general LLMs. The case study involving additional biomedical NLP tasks further shows Taiyi's considerable potential for bilingual biomedical multi-tasking. The source code, datasets, and model for Taiyi are freely available at https://github.com/DUTIR-BioNLP/Taiyi-LLM.
Abstract:Text-Video retrieval is a task of great practical value and has received increasing attention, among which learning spatial-temporal video representation is one of the research hotspots. The video encoders in the state-of-the-art video retrieval models usually directly adopt the pre-trained vision backbones with the network structure fixed, they therefore can not be further improved to produce the fine-grained spatial-temporal video representation. In this paper, we propose Token Shift and Selection Network (TS2-Net), a novel token shift and selection transformer architecture, which dynamically adjusts the token sequence and selects informative tokens in both temporal and spatial dimensions from input video samples. The token shift module temporally shifts the whole token features back-and-forth across adjacent frames, to preserve the complete token representation and capture subtle movements. Then the token selection module selects tokens that contribute most to local spatial semantics. Based on thorough experiments, the proposed TS2-Net achieves state-of-the-art performance on major text-video retrieval benchmarks, including new records on MSRVTT, VATEX, LSMDC, ActivityNet, and DiDeMo.
Abstract:Using neural networks to represent 3D objects has become popular. However, many previous works employ neural networks with fixed architecture and size to represent different 3D objects, which lead to excessive network parameters for simple objects and limited reconstruction accuracy for complex objects. For each 3D model, it is desirable to have an end-to-end neural network with as few parameters as possible to achieve high-fidelity reconstruction. In this paper, we propose an efficient model reconstruction method utilizing neural architecture search (NAS) and binary classification. Taking the number of layers, the number of nodes in each layer, and the activation function of each layer as the search space, a specific network architecture can be obtained based on reinforcement learning technology. Furthermore, to get rid of the traditional surface reconstruction algorithms (e.g., marching cube) used after network inference, we complete the end-to-end network by classifying binary voxels. Compared to other signed distance field (SDF) prediction or binary classification networks, our method achieves significantly higher reconstruction accuracy using fewer network parameters.
Abstract:Multi-task intersection navigation including the unprotected turning left, turning right, and going straight in dense traffic is still a challenging task for autonomous driving. For the human driver, the negotiation skill with other interactive vehicles is the key to guarantee safety and efficiency. However, it is hard to balance the safety and efficiency of the autonomous vehicle for multi-task intersection navigation. In this paper, we formulate a multi-task safe reinforcement learning with social attention to improve the safety and efficiency when interacting with other traffic participants. Specifically, the social attention module is used to focus on the states of negotiation vehicles. In addition, a safety layer is added to the multi-task reinforcement learning framework to guarantee safe negotiation. We compare the experiments in the simulator SUMO with abundant traffic flows and CARLA with high-fidelity vehicle models, which both show that the proposed algorithm can improve safety with consistent traffic efficiency for multi-task intersection navigation.
Abstract:In recent years, neural signed distance function (SDF) has become one of the most effective representation methods for 3D models. By learning continuous SDFs in 3D space, neural networks can predict the distance from a given query space point to its closest object surface,whose positive and negative signs denote inside and outside of the object, respectively. Training a specific network for each 3D model, which individually embeds its shape, can realize compressed representation of objects by storing fewer network (and possibly latent) parameters. Consequently, reconstruction through network inference and surface recovery can be achieved. In this paper, we propose an SDF prediction network using explicit key spheres as input. Key spheres are extracted from the internal space of objects, whose centers either have relatively larger SDF values (sphere radii), or are located at essential positions. By inputting the spatial information of multiple spheres which imply different local shapes, the proposed method can significantly improve the reconstruction accuracy with a negligible storage cost. Compared to previous works, our method achieves the high-fidelity and high-compression 3D object coding and reconstruction. Experiments conducted on three datasets verify the superior performance of our method.
Abstract:This paper presents a deep learning assisted synthesis approach for direct end-to-end generation of RF/mm-wave passive matching network with 3D EM structures. Different from prior approaches that synthesize EM structures from target circuit component values and target topologies, our proposed approach achieves the direct synthesis of the passive network given the network topology from desired performance values as input. We showcase the proposed synthesis Neural Network (NN) model on an on-chip 1:1 transformer-based impedance matching network. By leveraging parameter sharing, the synthesis NN model successfully extracts relevant features from the input impedance and load capacitors, and predict the transformer 3D EM geometry in a 45nm SOI process that will match the standard 50$\Omega$ load to the target input impedance while absorbing the two loading capacitors. As a proof-of-concept, several example transformer geometries were synthesized, and verified in Ansys HFSS to provide the desired input impedance.
Abstract:In recent years, control under urban intersection scenarios becomes an emerging research topic. In such scenarios, the autonomous vehicle confronts complicated situations since it must deal with the interaction with social vehicles timely while obeying the traffic rules. Generally, the autonomous vehicle is supposed to avoid collisions while pursuing better efficiency. The existing work fails to provide a framework that emphasizes the integrity of the scenarios while being able to deploy and test reinforcement learning(RL) methods. Specifically, we propose a benchmark for training and testing RL-based autonomous driving agents in complex intersection scenarios, which is called RL-CIS. Then, a set of baselines are deployed consists of various algorithms. The test benchmark and baselines are to provide a fair and comprehensive training and testing platform for the study of RL for autonomous driving in the intersection scenario, advancing the progress of RL-based methods for intersection autonomous driving control. The code of our proposed framework can be found at https://github.com/liuyuqi123/ComplexUrbanScenarios.