Abstract:Retrieval-Augmented Generation (RAG) demonstrates great value in alleviating outdated knowledge or hallucination by supplying LLMs with updated and relevant knowledge. However, there are still several difficulties for RAG in understanding complex multi-hop query and retrieving relevant documents, which require LLMs to perform reasoning and retrieve step by step. Inspired by human's reasoning process in which they gradually search for the required information, it is natural to ask whether the LLMs could notice the missing information in each reasoning step. In this work, we first experimentally verified the ability of LLMs to extract information as well as to know the missing. Based on the above discovery, we propose a Missing Information Guided Retrieve-Extraction-Solving paradigm (MIGRES), where we leverage the identification of missing information to generate a targeted query that steers the subsequent knowledge retrieval. Besides, we design a sentence-level re-ranking filtering approach to filter the irrelevant content out from document, along with the information extraction capability of LLMs to extract useful information from cleaned-up documents, which in turn to bolster the overall efficacy of RAG. Extensive experiments conducted on multiple public datasets reveal the superiority of the proposed MIGRES method, and analytical experiments demonstrate the effectiveness of our proposed modules.
Abstract:The rapid development of large language models has led to the widespread adoption of Retrieval-Augmented Generation (RAG), which integrates external knowledge to alleviate knowledge bottlenecks and mitigate hallucinations. However, the existing RAG paradigm inevitably suffers from the impact of flawed information introduced during the retrieval phrase, thereby diminishing the reliability and correctness of the generated outcomes. In this paper, we propose Credibility-aware Generation (CAG), a universally applicable framework designed to mitigate the impact of flawed information in RAG. At its core, CAG aims to equip models with the ability to discern and process information based on its credibility. To this end, we propose an innovative data transformation framework that generates data based on credibility, thereby effectively endowing models with the capability of CAG. Furthermore, to accurately evaluate the models' capabilities of CAG, we construct a comprehensive benchmark covering three critical real-world scenarios. Experimental results demonstrate that our model can effectively understand and utilize credibility for generation, significantly outperform other models with retrieval augmentation, and exhibit resilience against the disruption caused by noisy documents, thereby maintaining robust performance. Moreover, our model supports customized credibility, offering a wide range of potential applications.
Abstract:The sequential recommendation task aims to predict the item that user is interested in according to his/her historical action sequence. However, inevitable random action, i.e. user randomly accesses an item among multiple candidates or clicks several items at random order, cause the sequence fails to provide stable and high-quality signals. To alleviate the issue, we propose the StatisTics-Driven Pre-traing framework (called STDP briefly). The main idea of the work lies in the exploration of utilizing the statistics information along with the pre-training paradigm to stabilize the optimization of recommendation model. Specifically, we derive two types of statistical information: item co-occurrence across sequence and attribute frequency within the sequence. And we design the following pre-training tasks: 1) The co-occurred items prediction task, which encourages the model to distribute its attention on multiple suitable targets instead of just focusing on the next item that may be unstable. 2) We generate a paired sequence by replacing items with their co-occurred items and enforce its representation close with the original one, thus enhancing the model's robustness to the random noise. 3) To reduce the impact of random on user's long-term preferences, we encourage the model to capture sequence-level frequent attributes. The significant improvement over six datasets demonstrates the effectiveness and superiority of the proposal, and further analysis verified the generalization of the STDP framework on other models.
Abstract:The development of emotion recognition in dialogue (ERC) has been consistently hindered by the complexity of pipeline designs, leading to ERC models that often overfit to specific datasets and dialogue patterns. In this study, we propose a novel approach, namely InstructERC, to reformulates the ERC task from a discriminative framework to a generative framework based on Large Language Models (LLMs) . InstructERC has two significant contributions: Firstly, InstructERC introduces a simple yet effective retrieval template module, which helps the model explicitly integrate multi-granularity dialogue supervision information by concatenating the historical dialog content, label statement, and emotional domain demonstrations with high semantic similarity. Furthermore, we introduce two additional emotion alignment tasks, namely speaker identification and emotion prediction tasks, to implicitly model the dialogue role relationships and future emotional tendencies in conversations. Our LLM-based plug-and-play plugin framework significantly outperforms all previous models and achieves comprehensive SOTA on three commonly used ERC datasets. Extensive analysis of parameter-efficient and data-scaling experiments provide empirical guidance for applying InstructERC in practical scenarios. Our code will be released after blind review.
Abstract:Knowledge Base Question Answering (KBQA) aims to answer natural language questions with factual information such as entities and relations in KBs. However, traditional Pre-trained Language Models (PLMs) are directly pre-trained on large-scale natural language corpus, which poses challenges for them in understanding and representing complex subgraphs in structured KBs. To bridge the gap between texts and structured KBs, we propose a Structured Knowledge-aware Pre-training method (SKP). In the pre-training stage, we introduce two novel structured knowledge-aware tasks, guiding the model to effectively learn the implicit relationship and better representations of complex subgraphs. In downstream KBQA task, we further design an efficient linearization strategy and an interval attention mechanism, which assist the model to better encode complex subgraphs and shield the interference of irrelevant subgraphs during reasoning respectively. Detailed experiments and analyses on WebQSP verify the effectiveness of SKP, especially the significant improvement in subgraph retrieval (+4.08% H@10).
Abstract:Equipped with Chain-of-Thought (CoT), Large language models (LLMs) have shown impressive reasoning ability in various downstream tasks. Even so, suffering from hallucinations and the inability to access external knowledge, LLMs often come with incorrect or unfaithful intermediate reasoning steps, especially in the context of answering knowledge-intensive tasks such as KBQA. To alleviate this issue, we propose a framework called Knowledge-Driven Chain-of-Thought (KD-CoT) to verify and modify reasoning traces in CoT via interaction with external knowledge, and thus overcome the hallucinations and error propagation. Concretely, we formulate the CoT rationale process of LLMs into a structured multi-round QA format. In each round, LLMs interact with a QA system that retrieves external knowledge and produce faithful reasoning traces based on retrieved precise answers. The structured CoT reasoning of LLMs is facilitated by our developed KBQA CoT collection, which serves as in-context learning demonstrations and can also be utilized as feedback augmentation to train a robust retriever. Extensive experiments on WebQSP and ComplexWebQuestion datasets demonstrate the effectiveness of proposed KD-CoT in task-solving reasoning generation, which outperforms the vanilla CoT ICL with an absolute success rate of 8.0% and 5.1%. Furthermore, our proposed feedback-augmented retriever outperforms the state-of-the-art baselines for retrieving knowledge, achieving significant improvement in Hit performance.
Abstract:Translating natural language queries into SQLs in a seq2seq manner has attracted much attention recently. However, compared with abstract-syntactic-tree-based SQL generation, seq2seq semantic parsers face much more challenges, including poor quality on schematical information prediction and poor semantic coherence between natural language queries and SQLs. This paper analyses the above difficulties and proposes a seq2seq-oriented decoding strategy called SR, which includes a new intermediate representation SSQL and a reranking method with score re-estimator to solve the above obstacles respectively. Experimental results demonstrate the effectiveness of our proposed techniques and T5-SR-3b achieves new state-of-the-art results on the Spider dataset.
Abstract:Knowledge graphs (KGs) have received increasing attention due to its wide applications on natural language processing. However, its use case on temporal question answering (QA) has not been well-explored. Most of existing methods are developed based on pre-trained language models, which might not be capable to learn \emph{temporal-specific} presentations of entities in terms of temporal KGQA task. To alleviate this problem, we propose a novel \textbf{T}ime-aware \textbf{M}ultiway \textbf{A}daptive (\textbf{TMA}) fusion network. Inspired by the step-by-step reasoning behavior of humans. For each given question, TMA first extracts the relevant concepts from the KG, and then feeds them into a multiway adaptive module to produce a \emph{temporal-specific} representation of the question. This representation can be incorporated with the pre-trained KG embedding to generate the final prediction. Empirical results verify that the proposed model achieves better performance than the state-of-the-art models in the benchmark dataset. Notably, the Hits@1 and Hits@10 results of TMA on the CronQuestions dataset's complex questions are absolutely improved by 24\% and 10\% compared to the best-performing baseline. Furthermore, we also show that TMA employing an adaptive fusion mechanism can provide interpretability by analyzing the proportion of information in question representations.
Abstract:Transformer-based pre-trained models have achieved great improvements in semantic matching. However, existing models still suffer from insufficient ability to capture subtle differences. The modification, addition and deletion of words in sentence pairs may make it difficult for the model to predict their relationship. To alleviate this problem, we propose a novel Dual Path Modeling Framework to enhance the model's ability to perceive subtle differences in sentence pairs by separately modeling affinity and difference semantics. Based on dual-path modeling framework we design the Dual Path Modeling Network (DPM-Net) to recognize semantic relations. And we conduct extensive experiments on 10 well-studied semantic matching and robustness test datasets, and the experimental results show that our proposed method achieves consistent improvements over baselines.
Abstract:Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization.Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.