Abstract:Retrieval-Augmented Generation (RAG) demonstrates great value in alleviating outdated knowledge or hallucination by supplying LLMs with updated and relevant knowledge. However, there are still several difficulties for RAG in understanding complex multi-hop query and retrieving relevant documents, which require LLMs to perform reasoning and retrieve step by step. Inspired by human's reasoning process in which they gradually search for the required information, it is natural to ask whether the LLMs could notice the missing information in each reasoning step. In this work, we first experimentally verified the ability of LLMs to extract information as well as to know the missing. Based on the above discovery, we propose a Missing Information Guided Retrieve-Extraction-Solving paradigm (MIGRES), where we leverage the identification of missing information to generate a targeted query that steers the subsequent knowledge retrieval. Besides, we design a sentence-level re-ranking filtering approach to filter the irrelevant content out from document, along with the information extraction capability of LLMs to extract useful information from cleaned-up documents, which in turn to bolster the overall efficacy of RAG. Extensive experiments conducted on multiple public datasets reveal the superiority of the proposed MIGRES method, and analytical experiments demonstrate the effectiveness of our proposed modules.
Abstract:The sequential recommendation task aims to predict the item that user is interested in according to his/her historical action sequence. However, inevitable random action, i.e. user randomly accesses an item among multiple candidates or clicks several items at random order, cause the sequence fails to provide stable and high-quality signals. To alleviate the issue, we propose the StatisTics-Driven Pre-traing framework (called STDP briefly). The main idea of the work lies in the exploration of utilizing the statistics information along with the pre-training paradigm to stabilize the optimization of recommendation model. Specifically, we derive two types of statistical information: item co-occurrence across sequence and attribute frequency within the sequence. And we design the following pre-training tasks: 1) The co-occurred items prediction task, which encourages the model to distribute its attention on multiple suitable targets instead of just focusing on the next item that may be unstable. 2) We generate a paired sequence by replacing items with their co-occurred items and enforce its representation close with the original one, thus enhancing the model's robustness to the random noise. 3) To reduce the impact of random on user's long-term preferences, we encourage the model to capture sequence-level frequent attributes. The significant improvement over six datasets demonstrates the effectiveness and superiority of the proposal, and further analysis verified the generalization of the STDP framework on other models.
Abstract:Equipped with Chain-of-Thought (CoT), Large language models (LLMs) have shown impressive reasoning ability in various downstream tasks. Even so, suffering from hallucinations and the inability to access external knowledge, LLMs often come with incorrect or unfaithful intermediate reasoning steps, especially in the context of answering knowledge-intensive tasks such as KBQA. To alleviate this issue, we propose a framework called Knowledge-Driven Chain-of-Thought (KD-CoT) to verify and modify reasoning traces in CoT via interaction with external knowledge, and thus overcome the hallucinations and error propagation. Concretely, we formulate the CoT rationale process of LLMs into a structured multi-round QA format. In each round, LLMs interact with a QA system that retrieves external knowledge and produce faithful reasoning traces based on retrieved precise answers. The structured CoT reasoning of LLMs is facilitated by our developed KBQA CoT collection, which serves as in-context learning demonstrations and can also be utilized as feedback augmentation to train a robust retriever. Extensive experiments on WebQSP and ComplexWebQuestion datasets demonstrate the effectiveness of proposed KD-CoT in task-solving reasoning generation, which outperforms the vanilla CoT ICL with an absolute success rate of 8.0% and 5.1%. Furthermore, our proposed feedback-augmented retriever outperforms the state-of-the-art baselines for retrieving knowledge, achieving significant improvement in Hit performance.