Abstract:The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.
Abstract:In this work, we propose Causal Autoregressive Diffusion (CARD), a novel framework that unifies the training efficiency of ARMs with the high-throughput inference of diffusion models. CARD reformulates the diffusion process within a strictly causal attention mask, enabling dense, per-token supervision in a single forward pass. To address the optimization instability of causal diffusion, we introduce a soft-tailed masking schema to preserve local context and a context-aware reweighting mechanism derived from signal-to-noise principles. This design enables dynamic parallel decoding, where the model leverages KV-caching to adaptively generate variable-length token sequences based on confidence. Empirically, CARD outperforms existing discrete diffusion baselines while reducing training latency by 3 $\times$ compared to block diffusion methods. Our results demonstrate that CARD achieves ARM-level data efficiency while unlocking the latency benefits of parallel generation, establishing a robust paradigm for next-generation efficient LLMs.
Abstract:We introduce LongCat-Flash-Thinking-2601, a 560-billion-parameter open-source Mixture-of-Experts (MoE) reasoning model with superior agentic reasoning capability. LongCat-Flash-Thinking-2601 achieves state-of-the-art performance among open-source models on a wide range of agentic benchmarks, including agentic search, agentic tool use, and tool-integrated reasoning. Beyond benchmark performance, the model demonstrates strong generalization to complex tool interactions and robust behavior under noisy real-world environments. Its advanced capability stems from a unified training framework that combines domain-parallel expert training with subsequent fusion, together with an end-to-end co-design of data construction, environments, algorithms, and infrastructure spanning from pre-training to post-training. In particular, the model's strong generalization capability in complex tool-use are driven by our in-depth exploration of environment scaling and principled task construction. To optimize long-tailed, skewed generation and multi-turn agentic interactions, and to enable stable training across over 10,000 environments spanning more than 20 domains, we systematically extend our asynchronous reinforcement learning framework, DORA, for stable and efficient large-scale multi-environment training. Furthermore, recognizing that real-world tasks are inherently noisy, we conduct a systematic analysis and decomposition of real-world noise patterns, and design targeted training procedures to explicitly incorporate such imperfections into the training process, resulting in improved robustness for real-world applications. To further enhance performance on complex reasoning tasks, we introduce a Heavy Thinking mode that enables effective test-time scaling by jointly expanding reasoning depth and width through intensive parallel thinking.
Abstract:RL-based agentic search enables LLMs to solve complex questions via dynamic planning and external search. While this approach significantly enhances accuracy with agent policies optimized via large-scale reinforcement learning, we identify a critical gap in reliability: these agents fail to recognize their reasoning boundaries and rarely admit ``I DON'T KNOW'' (IDK) even when evidence is insufficient or reasoning reaches its limit. The lack of reliability often leads to plausible but unreliable answers, introducing significant risks in many real-world scenarios. To this end, we propose Boundary-Aware Policy Optimization (BAPO), a novel RL framework designed to cultivate reliable boundary awareness without compromising accuracy. BAPO introduces two key components: (i) a group-based boundary-aware reward that encourages an IDK response only when the reasoning reaches its limit, and (ii) an adaptive reward modulator that strategically suspends this reward during early exploration, preventing the model from exploiting IDK as a shortcut. Extensive experiments on four benchmarks demonstrate that BAPO substantially enhances the overall reliability of agentic search.
Abstract:Enabling Large Language Models (LLMs) to effectively utilize tools in multi-turn interactions is essential for building capable autonomous agents. However, acquiring diverse and realistic multi-turn tool-use data remains a significant challenge. In this work, we propose a novel text-based paradigm. We observe that textual corpora naturally contain rich, multi-step problem-solving experiences, which can serve as an untapped, scalable, and authentic data source for multi-turn tool-use tasks. Based on this insight, we introduce GEM, a data synthesis pipeline that enables the generation and extraction of multi-turn tool-use trajectories from text corpora through a four-stage process: relevance filtering, workflow & tool extraction, trajectory grounding, and complexity refinement. To reduce the computational cost, we further train a specialized Trajectory Synthesizer via supervised fine-tuning. This model distills the complex generation pipeline into an efficient, end-to-end trajectory generator. Experiments demonstrate that our GEM-32B achieve a 16.5% improvement on the BFCL V3 Multi-turn benchmark. Our models partially surpass the performance of models trained on τ - bench (Airline and Retail) in-domain data, highlighting the superior generalization capability derived from our text-based synthesis paradigm. Notably, our Trajectory Synthesizer matches the quality of the full pipeline while significantly reducing inference latency and costs.
Abstract:Reliable confidence is essential for trusting the outputs of LLMs, yet widely deployed post-trained LLMs (PoLLMs) typically compromise this trust with severe overconfidence. In contrast, we observe that their corresponding base LLMs often remain well-calibrated. This naturally motivates us to calibrate PoLLM confidence using the base LLM as a reference. This work proposes two ways to achieve this. A straightforward solution, BaseCal-ReEval, evaluates PoLLM's responses by feeding them into the base LLM to get average probabilities as confidence. While effective, this approach introduces additional inference overhead. To address this, we propose BaseCal-Proj, which trains a lightweight projection to map the final-layer hidden states of PoLLMs back to those of their base LLMs. These projected states are then processed by the base LLM's output layer to derive base-calibrated confidence for PoLLM's responses. Notably, BaseCal is an unsupervised, plug-and-play solution that operates without human labels or LLM modifications. Experiments across five datasets and three LLM families demonstrate the effectiveness of BaseCal, reducing Expected Calibration Error (ECE) by an average of 42.90\% compared to the best unsupervised baselines.
Abstract:We introduce LongCat ZigZag Attention (LoZA), which is a sparse attention scheme designed to transform any existing full-attention models into sparse versions with rather limited compute budget. In long-context scenarios, LoZA can achieve significant speed-ups both for prefill-intensive (e.g., retrieval-augmented generation) and decode-intensive (e.g., tool-integrated reasoning) cases. Specifically, by applying LoZA to LongCat-Flash during mid-training, we serve LongCat-Flash-Exp as a long-context foundation model that can swiftly process up to 1 million tokens, enabling efficient long-term reasoning and long-horizon agentic capabilities.
Abstract:Recent advances in foundation models have highlighted the significant benefits of multi-stage training, with a particular emphasis on the emergence of mid-training as a vital stage that bridges pre-training and post-training. Mid-training is distinguished by its use of intermediate data and computational resources, systematically enhancing specified capabilities such as mathematics, coding, reasoning, and long-context extension, while maintaining foundational competencies. This survey provides a formal definition of mid-training for large language models (LLMs) and investigates optimization frameworks that encompass data curation, training strategies, and model architecture optimization. We analyze mainstream model implementations in the context of objective-driven interventions, illustrating how mid-training serves as a distinct and critical stage in the progressive development of LLM capabilities. By clarifying the unique contributions of mid-training, this survey offers a comprehensive taxonomy and actionable insights, supporting future research and innovation in the advancement of LLMs.




Abstract:Autoformalization addresses the scarcity of data for Automated Theorem Proving (ATP) by translating mathematical problems from natural language into formal statements. Efforts in recent work shift from directly prompting large language models to training an end-to-end formalizer model from scratch, achieving remarkable advancements. However, existing formalizer still struggles to consistently generate valid statements that meet syntactic validity and semantic consistency. To address this issue, we propose the Autoformalizer with Tool Feedback (ATF), a novel approach that incorporates syntactic and consistency information as tools into the formalization process. By integrating Lean 4 compilers for syntax corrections and employing a multi-LLMs-as-judge approach for consistency validation, the model is able to adaptively refine generated statements according to the tool feedback, enhancing both syntactic validity and semantic consistency. The training of ATF involves a cold-start phase on synthetic tool-calling data, an expert iteration phase to improve formalization capabilities, and Direct Preference Optimization to alleviate ineffective revisions. Experimental results show that ATF markedly outperforms a range of baseline formalizer models, with its superior performance further validated by human evaluations. Subsequent analysis reveals that ATF demonstrates excellent inference scaling properties. Moreover, we open-source Numina-ATF, a dataset containing 750K synthetic formal statements to facilitate advancements in autoformalization and ATP research.




Abstract:Mathematical reasoning is a primary indicator of large language models (LLMs) intelligence. However, existing LLMs exhibit failures of robustness and generalization. This paper attributes these deficiencies to spurious reasoning, i.e., producing answers from superficial features. To address this challenge, we propose the AdaR framework to enable adaptive reasoning, wherein models rely on problem-solving logic to produce answers. AdaR synthesizes logically equivalent queries by varying variable values, and trains models with RLVR on these data to penalize spurious logic while encouraging adaptive logic. To improve data quality, we extract the problem-solving logic from the original query and generate the corresponding answer by code execution, then apply a sanity check. Experimental results demonstrate that AdaR improves robustness and generalization, achieving substantial improvement in mathematical reasoning while maintaining high data efficiency. Analysis indicates that data synthesis and RLVR function in a coordinated manner to enable adaptive reasoning in LLMs. Subsequent analyses derive key design insights into the effect of critical factors and the applicability to instruct LLMs. Our project is available at https://github.com/LaiZhejian/AdaR