Abstract:Consider a multiuser multiple-input multiple-output (MU-MIMO) downlink system in which the base station (BS) sends multiple data streams to multi-antenna users via symbol-level precoding (SLP), where the optimization of receive combining matrix becomes crucial, unlike in the single-antenna user scenario. We begin by introducing a joint optimization problem on the symbol-level transmit precoder and receive combiner. The problem is solved using the alternating optimization (AO) method, and the optimal solution structures for transmit precoding and receive combining matrices are derived by using Lagrangian and Karush-Kuhn-Tucker (KKT) conditions, based on which, the original problem is transformed into an equivalent quadratic programming problem, enabling more efficient solutions. To address the challenge that the above joint design is difficult to implement, we propose a more practical scheme where the receive combining optimization is replaced by the interference rejection combiner (IRC), which is however difficult to directly use because of the rank-one transmit precoding matrix. Therefore, we introduce a new regularized IRC (RIRC) receiver to circumvent the above issue. Numerical results demonstrate that the practical SLP-RIRC method enjoys only a slight communication performance loss compared to the joint transmit precoding and receive combining design, both offering substantial performance gains over the conventional BD-based approaches.
Abstract:Non-orthogonal multiple access (NOMA) is a powerful transmission technique that enhances the spectral efficiency of communication links, and is being investigated for 5G standards and beyond. A major drawback of NOMA is the need to apply successive interference cancellation (SIC) at the receiver on a symbol-by-symbol basis, which limits its practicality. To circumvent this, in this paper a novel constructive multiple access (CoMA) scheme is proposed and investigated. CoMA aligns the superimposed signals to the different users constructively to the signal of interest. Since the superimposed signal aligns with the data signal, there is no need to remove it at the receiver using SIC. Accordingly, SIC component can be removed at the receiver side. In this regard and in order to provide a comprehensive investigation and comparison, different optimization problems for user paring NOMA multiple-input-single-output (MISO) systems are considered. Firstly, an optimal precoder to minimize the total transmission power for CoMA subject to a quality-of-service constraint is obtained, and compared to conventional NOMA. Then, a precoder that minimizes the CoMA symbol error rate (SER) subject to power constraint is investigated. Further, the computational complexity of CoMA is considered and compared with conventional NOMA scheme in terms of total number of complex operations. The results in this paper prove the superiority of the proposed CoMA scheme over the conventional NOMA technique, and demonstrate that CoMA is an attractive solution for user paring NOMA MISO systems with low number of BS antennas, while circumventing the receive SIC complexity.