Abstract:The scarcity of non-English data limits the development of non-English large language models (LLMs). Transforming English-centric LLMs to non-English has been identified as an effective and resource-efficient method. Previous works start from base LLMs and perform knowledge distillation (KD) with data generated by stronger LLMs, e.g. GPT-4. Compared to base LLMs, chat LLMs are further optimized for advanced abilities, e.g. multi-turn conversation and human preference alignment, and thus more powerful in both helpfulness and safety. However, transforming a chat LLM involves two critical issues: (1) How can we effectively transfer advanced abilities without their supervised data? (2) How can we prevent the original knowledge from catastrophic forgetting during transformation? We target these issues by introducing a simple framework called TransLLM. For the first issue, TransLLM divides the transfer problem into some common sub-tasks with the translation chain-of-thought, which uses the translation as the bridge between English and non-English step-by-step. We further enhance the performance of sub-tasks with publicly available data. For the second issue, we propose a method comprising two synergistic components: low-rank adaptation for training to maintain the original LLM parameters, and recovery KD, which utilizes data generated by the chat LLM itself to recover the original knowledge from the frozen parameters. In the experiments, we transform the LLaMA-2-chat-7B to the Thai language. Our method, using only single-turn data, outperforms strong baselines and ChatGPT on multi-turn benchmark MT-bench. Furthermore, our method, without safety data, rejects more harmful queries of safety benchmark AdvBench than both ChatGPT and GPT-4.
Abstract:Machine Translation Quality Estimation (MTQE) is the task of estimating the quality of machine-translated text in real time without the need for reference translations, which is of great importance for the development of MT. After two decades of evolution, QE has yielded a wealth of results. This article provides a comprehensive overview of QE datasets, annotation methods, shared tasks, methodologies, challenges, and future research directions. It begins with an introduction to the background and significance of QE, followed by an explanation of the concepts and evaluation metrics for word-level QE, sentence-level QE, document-level QE, and explainable QE. The paper categorizes the methods developed throughout the history of QE into those based on handcrafted features, deep learning, and Large Language Models (LLMs), with a further division of deep learning-based methods into classic deep learning and those incorporating pre-trained language models (LMs). Additionally, the article details the advantages and limitations of each method and offers a straightforward comparison of different approaches. Finally, the paper discusses the current challenges in QE research and provides an outlook on future research directions.
Abstract:Large Language Models (LLMs) have achieved remarkable results in the machine translation evaluation task, yet there remains a gap in knowledge regarding how they utilize the provided data to conduct evaluations. This study aims to explore how LLMs leverage source and reference information in evaluating translations, with the ultimate goal of better understanding the working mechanism of LLMs. To this end, we design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information. Surprisingly, we find that reference information significantly enhances the evaluation accuracy, while source information sometimes is counterproductive, indicating a lack of cross-lingual capability when using LLMs to evaluate translations. We further conduct a meta-evaluation for translation error detection of LLMs, observing a similar phenomenon. These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks.
Abstract:Though reasoning abilities are considered language-agnostic, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in a pivot language is superior to other languages due to the imbalance of multilingual training data.To enhance reasoning abilities in non-pivot languages, we propose an alignment-as-preference optimization framework. Specifically, we adopt an open-source translation model to estimate the consistency between answers in non-pivot and pivot languages. We further adopt the answer consistency as the preference for DPO or PPO thus optimizing the lesser reasoning. Experiments show that our method significantly improves the model's multilingual reasoning, with better reasoning consistency across languages. Our framework achieved a 13.7% accuracy improvement on out-of-domain datasets MSVAMP while preserving the competitive performance on MGSM. Moreover, we find that iterative DPO is helpful for further alignment and improvement of the model's multilingual mathematical reasoning ability, further pushing the improvement to 16.7%
Abstract:We introduce the submissions of the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task. Our team submitted predictions for the English-German language pair on all two sub-tasks: (i) sentence- and word-level quality prediction; and (ii) fine-grained error span detection. This year, we further explore pseudo data methods for QE based on NJUQE framework (https://github.com/NJUNLP/njuqe). We generate pseudo MQM data using parallel data from the WMT translation task. We pre-train the XLMR large model on pseudo QE data, then fine-tune it on real QE data. At both stages, we jointly learn sentence-level scores and word-level tags. Empirically, we conduct experiments to find the key hyper-parameters that improve the performance. Technically, we propose a simple method that covert the word-level outputs to fine-grained error span results. Overall, our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks by a considerable margin.
Abstract:Abstractive summarization is the process of generating a summary given a document as input. Although significant progress has been made, the factual inconsistency between the document and the generated summary still limits its practical applications. Previous work found that the probabilities assigned by the generation model reflect its preferences for the generated summary, including the preference for factual consistency, and the preference for the language or knowledge prior as well. To separate the preference for factual consistency, we propose an unsupervised framework named CoP by controlling the preference of the generation model with the help of prompt. More specifically, the framework performs an extra inference step in which a text prompt is introduced as an additional input. In this way, another preference is described by the generation probability of this extra inference process. The difference between the above two preferences, i.e. the difference between the probabilities, could be used as measurements for detecting factual inconsistencies. Interestingly, we found that with the properly designed prompt, our framework could evaluate specific preferences and serve as measurements for fine-grained categories of inconsistency, such as entity-related inconsistency, coreference-related inconsistency, etc. Moreover, our framework could also be extended to the supervised setting to learn better prompt from the labeled data as well. Experiments show that our framework achieves new SOTA results on three factual inconsistency detection tasks.
Abstract:Machine Translation Quality Estimation (QE) is a task of predicting the quality of machine translations without relying on any reference. Recently, the predictor-estimator framework trains the predictor as a feature extractor, which leverages the extra parallel corpora without QE labels, achieving promising QE performance. However, we argue that there are gaps between the predictor and the estimator in both data quality and training objectives, which preclude QE models from benefiting from a large number of parallel corpora more directly. We propose a novel framework called DirectQE that provides a direct pretraining for QE tasks. In DirectQE, a generator is trained to produce pseudo data that is closer to the real QE data, and a detector is pretrained on these data with novel objectives that are akin to the QE task. Experiments on widely used benchmarks show that DirectQE outperforms existing methods, without using any pretraining models such as BERT. We also give extensive analyses showing how fixing the two gaps contributes to our improvements.
Abstract:Modern machine learning algorithms usually involve tuning multiple (from one to thousands) hyperparameters which play a pivotal role in terms of model generalizability. Black-box optimization and gradient-based algorithms are two dominant approaches to hyperparameter optimization while they have totally distinct advantages. How to design a new hyperparameter optimization technique inheriting all benefits from both approaches is still an open problem. To address this challenging problem, in this paper, we propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG). Specifically, we first exactly formulate hyperparameter optimization as an A-based constrained optimization problem, where A is a black-box optimization algorithm (such as deep neural network). Then, we use the average zeroth-order hyper-gradients to update hyperparameters. We provide the feasibility analysis of using HOZOG to achieve hyperparameter optimization. Finally, the experimental results on three representative hyperparameter (the size is from 1 to 1250) optimization tasks demonstrate the benefits of HOZOG in terms of simplicity, scalability, flexibility, effectiveness and efficiency compared with the state-of-the-art hyperparameter optimization methods.
Abstract:Semi-supervised learning is pervasive in real-world applications, where only a few labeled data are available and large amounts of instances remain unlabeled. Since AUC is an important model evaluation metric in classification, directly optimizing AUC in semi-supervised learning scenario has drawn much attention in the machine learning community. Recently, it has been shown that one could find an unbiased solution for the semi-supervised AUC maximization problem without knowing the class prior distribution. However, this method is hardly scalable for nonlinear classification problems with kernels. To address this problem, in this paper, we propose a novel scalable quadruply stochastic gradient algorithm (QSG-S2AUC) for nonlinear semi-supervised AUC optimization. In each iteration of the stochastic optimization process, our method randomly samples a positive instance, a negative instance, an unlabeled instance and their random features to compute the gradient and then update the model by using this quadruply stochastic gradient to approach the optimal solution. More importantly, we prove that QSG-S2AUC can converge to the optimal solution in O(1/t), where t is the iteration number. Extensive experimental results on a variety of benchmark datasets show that QSG-S2AUC is far more efficient than the existing state-of-the-art algorithms for semi-supervised AUC maximization while retaining the similar generalization performance.
Abstract:Semi-supervised learning (SSL) plays an increasingly important role in the big data era because a large number of unlabeled samples can be used effectively to improve the performance of the classifier. Semi-supervised support vector machine (S$^3$VM) is one of the most appealing methods for SSL, but scaling up S$^3$VM for kernel learning is still an open problem. Recently, a doubly stochastic gradient (DSG) algorithm has been proposed to achieve efficient and scalable training for kernel methods. However, the algorithm and theoretical analysis of DSG are developed based on the convexity assumption which makes them incompetent for non-convex problems such as S$^3$VM. To address this problem, in this paper, we propose a triply stochastic gradient algorithm for S$^3$VM, called TSGS$^3$VM. Specifically, to handle two types of data instances involved in S$^3$VM, TSGS$^3$VM samples a labeled instance and an unlabeled instance as well with the random features in each iteration to compute a triply stochastic gradient. We use the approximated gradient to update the solution. More importantly, we establish new theoretic analysis for TSGS$^3$VM which guarantees that TSGS$^3$VM can converge to a stationary point. Extensive experimental results on a variety of datasets demonstrate that TSGS$^3$VM is much more efficient and scalable than existing S$^3$VM algorithms.