Abstract:The performance of offline reinforcement learning (RL) suffers from the limited size and quality of static datasets. Model-based offline RL addresses this issue by generating synthetic samples through a dynamics model to enhance overall performance. To evaluate the reliability of the generated samples, uncertainty estimation methods are often employed. However, model ensemble, the most commonly used uncertainty estimation method, is not always the best choice. In this paper, we propose a \textbf{S}earch-based \textbf{U}ncertainty estimation method for \textbf{M}odel-based \textbf{O}ffline RL (SUMO) as an alternative. SUMO characterizes the uncertainty of synthetic samples by measuring their cross entropy against the in-distribution dataset samples, and uses an efficient search-based method for implementation. In this way, SUMO can achieve trustworthy uncertainty estimation. We integrate SUMO into several model-based offline RL algorithms including MOPO and Adapted MOReL (AMOReL), and provide theoretical analysis for them. Extensive experimental results on D4RL datasets demonstrate that SUMO can provide more accurate uncertainty estimation and boost the performance of base algorithms. These indicate that SUMO could be a better uncertainty estimator for model-based offline RL when used in either reward penalty or trajectory truncation. Our code is available and will be open-source for further research and development.
Abstract:The primacy bias in deep reinforcement learning (DRL), which refers to the agent's tendency to overfit early data and lose the ability to learn from new data, can significantly decrease the performance of DRL algorithms. Previous studies have shown that employing simple techniques, such as resetting the agent's parameters, can substantially alleviate the primacy bias. However, we observe that resetting the agent's parameters harms its performance in the context of model-based reinforcement learning (MBRL). In fact, on further investigation, we find that the primacy bias in MBRL differs from that in model-free RL. In this work, we focus on investigating the primacy bias in MBRL and propose world model resetting, which works in MBRL. We apply our method to two different MBRL algorithms, MBPO and DreamerV2. We validate the effectiveness of our method on multiple continuous control tasks on MuJoCo and DeepMind Control Suite, as well as discrete control tasks on Atari 100k benchmark. The results show that world model resetting can significantly alleviate the primacy bias in model-based setting and improve algorithm's performance. We also give a guide on how to perform world model resetting effectively.