Abstract:Aligning Large Language Models (LLMs) with general human preferences has been proved crucial in improving the interaction quality between LLMs and human. However, human values are inherently diverse among different individuals, making it insufficient to align LLMs solely with general preferences. To address this, personalizing LLMs according to individual feedback emerges as a promising solution. Nonetheless, this approach presents challenges in terms of the efficiency of alignment algorithms. In this work, we introduce a flexible paradigm for individual preference alignment. Our method fundamentally improves efficiency by disentangling preference representation from text generation in LLMs. We validate our approach across multiple text generation tasks and demonstrate that it can produce aligned quality as well as or better than PEFT-based methods, while reducing additional training time for each new individual preference by $80\%$ to $90\%$ in comparison with them.
Abstract:As large language models (LLMs) continue to advance in capability and influence, ensuring their security and preventing harmful outputs has become crucial. A promising approach to address these concerns involves training models to automatically generate adversarial prompts for red teaming. However, the evolving subtlety of vulnerabilities in LLMs challenges the effectiveness of current adversarial methods, which struggle to specifically target and explore the weaknesses of these models. To tackle these challenges, we introduce the $\mathbf{S}\text{elf-}\mathbf{E}\text{volving }\mathbf{A}\text{dversarial }\mathbf{S}\text{afety }\mathbf{(SEAS)}$ optimization framework, which enhances security by leveraging data generated by the model itself. SEAS operates through three iterative stages: Initialization, Attack, and Adversarial Optimization, refining both the Red Team and Target models to improve robustness and safety. This framework reduces reliance on manual testing and significantly enhances the security capabilities of LLMs. Our contributions include a novel adversarial framework, a comprehensive safety dataset, and after three iterations, the Target model achieves a security level comparable to GPT-4, while the Red Team model shows a marked increase in attack success rate (ASR) against advanced models.
Abstract:Knowledge Base Question Answering (KBQA) aims to answer natural language questions with factual information such as entities and relations in KBs. However, traditional Pre-trained Language Models (PLMs) are directly pre-trained on large-scale natural language corpus, which poses challenges for them in understanding and representing complex subgraphs in structured KBs. To bridge the gap between texts and structured KBs, we propose a Structured Knowledge-aware Pre-training method (SKP). In the pre-training stage, we introduce two novel structured knowledge-aware tasks, guiding the model to effectively learn the implicit relationship and better representations of complex subgraphs. In downstream KBQA task, we further design an efficient linearization strategy and an interval attention mechanism, which assist the model to better encode complex subgraphs and shield the interference of irrelevant subgraphs during reasoning respectively. Detailed experiments and analyses on WebQSP verify the effectiveness of SKP, especially the significant improvement in subgraph retrieval (+4.08% H@10).
Abstract:Transformer-based pre-trained models like BERT have achieved great progress on Semantic Sentence Matching. Meanwhile, dependency prior knowledge has also shown general benefits in multiple NLP tasks. However, how to efficiently integrate dependency prior structure into pre-trained models to better model complex semantic matching relations is still unsettled. In this paper, we propose the \textbf{D}ependency-Enhanced \textbf{A}daptive \textbf{F}usion \textbf{A}ttention (\textbf{DAFA}), which explicitly introduces dependency structure into pre-trained models and adaptively fuses it with semantic information. Specifically, \textbf{\emph{(i)}} DAFA first proposes a structure-sensitive paradigm to construct a dependency matrix for calibrating attention weights. It adopts an adaptive fusion module to integrate the obtained dependency information and the original semantic signals. Moreover, DAFA reconstructs the attention calculation flow and provides better interpretability. By applying it on BERT, our method achieves state-of-the-art or competitive performance on 10 public datasets, demonstrating the benefits of adaptively fusing dependency structure in semantic matching task.
Abstract:Recently, prompt-based methods have achieved significant performance in few-shot learning scenarios by bridging the gap between language model pre-training and fine-tuning for downstream tasks. However, existing prompt templates are mostly designed for sentence-level tasks and are inappropriate for sequence labeling objectives. To address the above issue, we propose a multi-task instruction-based generative framework, named InstructionNER, for low-resource named entity recognition. Specifically, we reformulate the NER task as a generation problem, which enriches source sentences with task-specific instructions and answer options, then inferences the entities and types in natural language. We further propose two auxiliary tasks, including entity extraction and entity typing, which enable the model to capture more boundary information of entities and deepen the understanding of entity type semantics, respectively. Experimental results show that our method consistently outperforms other baselines on five datasets in few-shot settings.
Abstract:Learning high-quality sentence representations benefits a wide range of natural language processing tasks. Though BERT-based pre-trained language models achieve high performance on many downstream tasks, the native derived sentence representations are proved to be collapsed and thus produce a poor performance on the semantic textual similarity (STS) tasks. In this paper, we present ConSERT, a Contrastive Framework for Self-Supervised Sentence Representation Transfer, that adopts contrastive learning to fine-tune BERT in an unsupervised and effective way. By making use of unlabeled texts, ConSERT solves the collapse issue of BERT-derived sentence representations and make them more applicable for downstream tasks. Experiments on STS datasets demonstrate that ConSERT achieves an 8\% relative improvement over the previous state-of-the-art, even comparable to the supervised SBERT-NLI. And when further incorporating NLI supervision, we achieve new state-of-the-art performance on STS tasks. Moreover, ConSERT obtains comparable results with only 1000 samples available, showing its robustness in data scarcity scenarios.