Kuaishou Natural Language Processing Center and Audio Center
Abstract:Recent advances in large language models (LLMs) have shown remarkable progress, yet their capacity for logical ``slow-thinking'' reasoning persists as a critical research frontier. Current inference scaling paradigms suffer from two fundamental constraints: fragmented thought flows compromising logical coherence, and intensively computational complexity that escalates with search space dimensions. To overcome these limitations, we present \textbf{Atomic Reasoner} (\textbf{AR}), a cognitive inference strategy that enables fine-grained reasoning through systematic atomic-level operations. AR decomposes the reasoning process into atomic cognitive units, employing a cognitive routing mechanism to dynamically construct reasoning representations and orchestrate inference pathways. This systematic methodology implements stepwise, structured cognition, which ensures logical coherence while significantly reducing cognitive load, effectively simulating the cognitive patterns observed in human deep thinking processes. Extensive experimental results demonstrate AR's superior reasoning capabilities without the computational burden of exhaustive solution searches, particularly excelling in linguistic logic puzzles. These findings substantiate AR's effectiveness in enhancing LLMs' capacity for robust, long-sequence logical reasoning and deliberation.
Abstract:Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. \textbf{HAICTrain} comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, \textbf{HAICBench} includes 500 manually annotated video-caption pairs and 1,400 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench are released at https://huggingface.co/datasets/KuaishouHAIC/HAIC.
Abstract:Recently, enhancing the numerical and logical reasoning capability of Large Language Models (LLMs) has emerged as a research hotspot. Existing methods face several limitations: inference-phase techniques (e.g., Chain of Thoughts) rely on prompt selection and the pretrained knowledge; sentence-level Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) struggle with step-wise mathematical correctness and depend on stronger models distillation or human annotations; while Reinforcement Learning (RL) approaches incur high GPU memory costs and unstable training. To address these, we propose \textbf{S}elf-training framework integrating \textbf{P}rocess \textbf{P}reference learning using \textbf{D}ynamic value margin (SPPD). SPPD leverages a process-based Markov Decision Process (MDP) and Bellman optimality equation to derive \textbf{dynamic value margin} on step-level preference optimization, which employs tree-based self-sampling on model responses \textbf{without any distillation} from other models. Furthermore, we theoretically prove that SPPD is \textbf{equivalent to on-policy policy gradient methods} under reward constraints. Experiments on 7B-scale models demonstrate superior performance across in-domain and out-domain mathematical benchmarks. We open-source our code at \href{https://anonymous.4open.science/r/SSDPO-D-DCDD}{https://anonymous.4open.science/r/SPPD-DCDD}.
Abstract:The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.
Abstract:Recently, Large language models (LLMs) have revolutionized Natural Language Processing (NLP). Pretrained LLMs, due to limited training context size, struggle with handling long token sequences, limiting their performance on various downstream tasks. Current solutions toward long context modeling often employ multi-stage continual pertaining, which progressively increases the effective context length through several continual pretraining stages. However, those approaches require extensive manual tuning and human expertise. In this paper, we introduce a novel single-stage continual pretraining method, Head-Adaptive Rotary Position Encoding (HARPE), to equip LLMs with long context modeling capabilities while simplifying the training process. Our HARPE leverages different Rotary Position Encoding (RoPE) base frequency values across different attention heads and directly trains LLMs on the target context length. Extensive experiments on 4 language modeling benchmarks, including the latest RULER benchmark, demonstrate that HARPE excels in understanding and integrating long-context tasks with single-stage training, matching and even outperforming existing multi-stage methods. Our results highlight that HARPE successfully breaks the stage barrier for training LLMs with long context modeling capabilities.
Abstract:High-quality video-text preference data is crucial for Multimodal Large Language Models (MLLMs) alignment. However, existing preference data is very scarce. Obtaining VQA preference data for preference training is costly, and manually annotating responses is highly unreliable, which could result in low-quality pairs. Meanwhile, AI-generated responses controlled by temperature adjustment lack diversity. To address these issues, we propose a high-quality VQA preference dataset, called \textit{\textbf{M}ultiple \textbf{M}ultimodal \textbf{A}rtificial \textbf{I}ntelligence \textbf{P}reference Datasets in \textbf{V}QA} (\textbf{MMAIP-V}), which is constructed by sampling from the response distribution set and using an external scoring function for response evaluation. Furthermore, to fully leverage the preference knowledge in MMAIP-V and ensure sufficient optimization, we propose \textit{\textbf{Iter}ative \textbf{W}eak-to-\textbf{S}trong \textbf{R}einforcement \textbf{L}earning from \textbf{AI} \textbf{F}eedback for video MLLMs} (\textbf{Iter-W2S-RLAIF}), a framework that gradually enhances MLLMs' alignment capabilities by iteratively updating the reference model and performing parameter extrapolation. Finally, we propose an unbiased and information-complete evaluation scheme in VQA evaluation. Experiments demonstrate that MMAIP-V is beneficial for MLLMs in preference learning and Iter-W2S-RLAIF fully exploits the alignment information in MMAIP-V. We believe that the proposed automatic VQA preference data generation pipeline based on AI feedback can greatly promote future work in the MLLMs alignment. \textbf{Code and dataset are available} \href{https://anonymous.4open.science/r/MMAIP-V_Iter-W2S-RLAIF-702F}{MMAIP-V\_Iter-W2S-RLAIF-702F}.
Abstract:Large language models often encounter challenges with static knowledge and hallucinations, which undermine their reliability. Retrieval-augmented generation (RAG) mitigates these issues by incorporating external information. However, user queries frequently contain noise and intent deviations, necessitating query rewriting to improve the relevance of retrieved documents. In this paper, we introduce DMQR-RAG, a Diverse Multi-Query Rewriting framework designed to improve the performance of both document retrieval and final responses in RAG. Specifically, we investigate how queries with varying information quantities can retrieve a diverse array of documents, presenting four rewriting strategies that operate at different levels of information to enhance the performance of baseline approaches. Additionally, we propose an adaptive strategy selection method that minimizes the number of rewrites while optimizing overall performance. Our methods have been rigorously validated through extensive experiments conducted in both academic and industry settings.
Abstract:Recently, video-language understanding has achieved great success through large-scale pre-training. However, data scarcity remains a prevailing challenge. This study quantitatively reveals an "impossible trinity" among data quantity, diversity, and quality in pre-training datasets. Recent efforts seek to refine large-scale, diverse ASR datasets compromised by low quality through synthetic annotations. These methods successfully leverage useful information in multimodal video content (frames, tags, ASR transcripts, etc.) to refine the original annotations. Nevertheless, they struggle to mitigate noise within synthetic annotations and lack scalability as the dataset size expands. To address these issues, we introduce the Video DataFlywheel framework, which iteratively refines video annotations with improved noise control methods. For iterative refinement, we first leverage a video-language model to generate synthetic annotations, resulting in a refined dataset. Then, we pre-train on it and fine-tune on human refinement examples for a stronger model. These processes are repeated for continuous improvement. For noise control, we present AdaTaiLr, a novel noise control method that requires weaker assumptions on noise distribution, thereby proving more effective in large datasets with theoretical guarantees. The combination of iterative refinement and AdaTaiLr can achieve better scalability in video-language understanding. Extensive experiments show that our framework outperforms existing data refinement baselines, delivering a 3% performance boost and improving dataset quality with minimal diversity loss. Furthermore, our refined dataset facilitates significant improvements in various video-language understanding tasks, including video question answering and text-video retrieval.
Abstract:Enhancing the conformity of large language models (LLMs) to human preferences remains an ongoing research challenge. Recently, offline approaches such as Direct Preference Optimization (DPO) have gained prominence as attractive options due to offering effective improvement in simple, efficient, and stable without interactions with reward models. However, these offline preference optimization methods highly rely on the quality of pairwise preference samples. Meanwhile, numerous iterative methods require additional training of reward models to select positive and negative samples from the model's own generated responses for preference learning. Furthermore, as LLMs' capabilities advance, it is quite challenging to continuously construct high-quality positive and negative preference instances from the model's outputs due to the lack of diversity. To tackle these challenges, we propose TSO, or Self-Training with Scaled Preference Optimization, a framework for preference optimization that conducts self-training preference learning without training an additional reward model. TSO enhances the diversity of responses by constructing a model matrix and incorporating human preference responses. Furthermore, TSO introduces corrections for model preference errors through human and AI feedback. Finally, TSO adopts iterative and dual clip reward strategies to update the reference model and its responses, adaptively adjusting preference data and balancing the optimization process. Experimental results demonstrate that TSO outperforms existing mainstream methods on various alignment evaluation benchmarks, providing practical insight into preference data construction and model training strategies in the alignment domain.
Abstract:Reinforcement Learning from Human Feedback (RLHF) facilitates the alignment of large language models (LLMs) with human preferences, thereby enhancing the quality of responses generated. A critical component of RLHF is the reward model, which is trained on preference data and outputs a scalar reward during the inference stage. However, the collection of preference data still lacks thorough investigation. Recent studies indicate that preference data is collected either by AI or humans, where chosen and rejected instances are identified among pairwise responses. We question whether this process effectively filters out noise and ensures sufficient diversity in collected data. To address these concerns, for the first time, we propose a comprehensive framework for preference data collection, decomposing the process into four incremental steps: Prompt Generation, Response Generation, Response Filtering, and Human Labeling. This structured approach ensures the collection of high-quality preferences while reducing reliance on human labor. We conducted comprehensive experiments based on the data collected at different stages, demonstrating the effectiveness of the proposed data collection method.