Abstract:Recently, Large language models (LLMs) have revolutionized Natural Language Processing (NLP). Pretrained LLMs, due to limited training context size, struggle with handling long token sequences, limiting their performance on various downstream tasks. Current solutions toward long context modeling often employ multi-stage continual pertaining, which progressively increases the effective context length through several continual pretraining stages. However, those approaches require extensive manual tuning and human expertise. In this paper, we introduce a novel single-stage continual pretraining method, Head-Adaptive Rotary Position Encoding (HARPE), to equip LLMs with long context modeling capabilities while simplifying the training process. Our HARPE leverages different Rotary Position Encoding (RoPE) base frequency values across different attention heads and directly trains LLMs on the target context length. Extensive experiments on 4 language modeling benchmarks, including the latest RULER benchmark, demonstrate that HARPE excels in understanding and integrating long-context tasks with single-stage training, matching and even outperforming existing multi-stage methods. Our results highlight that HARPE successfully breaks the stage barrier for training LLMs with long context modeling capabilities.
Abstract:The prevalent use of Byte Pair Encoding (BPE) in Large Language Models (LLMs) facilitates robust handling of subword units and avoids issues of out-of-vocabulary words. Despite its success, a critical challenge persists: long tokens, rich in semantic information, have fewer occurrences in tokenized datasets compared to short tokens, which can result in imbalanced learning issue across different tokens. To address that, we propose LBPE, which prioritizes long tokens during the encoding process. LBPE generates tokens according to their reverse ranks of token length rather than their ranks in the vocabulary, granting longer tokens higher priority during the encoding process. Consequently, LBPE smooths the frequency differences between short and long tokens, and thus mitigates the learning imbalance. Extensive experiments across diverse language modeling tasks demonstrate that LBPE consistently outperforms the original BPE, well demonstrating its effectiveness.
Abstract:Federated learning is a distributed machine learning paradigm designed to protect user data privacy, which has been successfully implemented across various scenarios. In traditional federated learning, the entire parameter set of local models is updated and averaged in each training round. Although this full network update method maximizes knowledge acquisition and sharing for each model layer, it prevents the layers of the global model from cooperating effectively to complete the tasks of each client, a challenge we refer to as layer mismatch. This mismatch problem recurs after every parameter averaging, consequently slowing down model convergence and degrading overall performance. To address the layer mismatch issue, we introduce the FedPart method, which restricts model updates to either a single layer or a few layers during each communication round. Furthermore, to maintain the efficiency of knowledge acquisition and sharing, we develop several strategies to select trainable layers in each round, including sequential updating and multi-round cycle training. Through both theoretical analysis and experiments, our findings demonstrate that the FedPart method significantly surpasses conventional full network update strategies in terms of convergence speed and accuracy, while also reducing communication and computational overheads.
Abstract:3D Gaussian Splatting (3DGS) has gained significant attention for its application in dense Simultaneous Localization and Mapping (SLAM), enabling real-time rendering and high-fidelity mapping. However, existing 3DGS-based SLAM methods often suffer from accumulated tracking errors and map drift, particularly in large-scale environments. To address these issues, we introduce GLC-SLAM, a Gaussian Splatting SLAM system that integrates global optimization of camera poses and scene models. Our approach employs frame-to-model tracking and triggers hierarchical loop closure using a global-to-local strategy to minimize drift accumulation. By dividing the scene into 3D Gaussian submaps, we facilitate efficient map updates following loop corrections in large scenes. Additionally, our uncertainty-minimized keyframe selection strategy prioritizes keyframes observing more valuable 3D Gaussians to enhance submap optimization. Experimental results on various datasets demonstrate that GLC-SLAM achieves superior or competitive tracking and mapping performance compared to state-of-the-art dense RGB-D SLAM systems.
Abstract:Semi-supervised multi-organ medical image segmentation aids physicians in improving disease diagnosis and treatment planning and reduces the time and effort required for organ annotation.Existing state-of-the-art methods train the labeled data with ground truths and train the unlabeled data with pseudo-labels. However, the two training flows are separate, which does not reflect the interrelationship between labeled and unlabeled data.To address this issue, we propose a semi-supervised multi-organ segmentation method called GuidedNet, which leverages the knowledge from labeled data to guide the training of unlabeled data. The primary goals of this study are to improve the quality of pseudo-labels for unlabeled data and to enhance the network's learning capability for both small and complex organs.A key concept is that voxel features from labeled and unlabeled data that are close to each other in the feature space are more likely to belong to the same class.On this basis, a 3D Consistent Gaussian Mixture Model (3D-CGMM) is designed to leverage the feature distributions from labeled data to rectify the generated pseudo-labels.Furthermore, we introduce a Knowledge Transfer Cross Pseudo Supervision (KT-CPS) strategy, which leverages the prior knowledge obtained from the labeled data to guide the training of the unlabeled data, thereby improving the segmentation accuracy for both small and complex organs. Extensive experiments on two public datasets, FLARE22 and AMOS, demonstrated that GuidedNet is capable of achieving state-of-the-art performance.
Abstract:In personalized federated learning (PFL), it is widely recognized that achieving both high model generalization and effective personalization poses a significant challenge due to their conflicting nature. As a result, existing PFL methods can only manage a trade-off between these two objectives. This raises an interesting question: Is it feasible to develop a model capable of achieving both objectives simultaneously? Our paper presents an affirmative answer, and the key lies in the observation that deep models inherently exhibit hierarchical architectures, which produce representations with various levels of generalization and personalization at different stages. A straightforward approach stemming from this observation is to select multiple representations from these layers and combine them to concurrently achieve generalization and personalization. However, the number of candidate representations is commonly huge, which makes this method infeasible due to high computational costs.To address this problem, we propose DualFed, a new method that can directly yield dual representations correspond to generalization and personalization respectively, thereby simplifying the optimization task. Specifically, DualFed inserts a personalized projection network between the encoder and classifier. The pre-projection representations are able to capture generalized information shareable across clients, and the post-projection representations are effective to capture task-specific information on local clients. This design minimizes the mutual interference between generalization and personalization, thereby achieving a win-win situation. Extensive experiments show that DualFed can outperform other FL methods. Code is available at https://github.com/GuogangZhu/DualFed.
Abstract:In traditional Federated Learning approaches like FedAvg, the global model underperforms when faced with data heterogeneity. Personalized Federated Learning (PFL) enables clients to train personalized models to fit their local data distribution better. However, we surprisingly find that the feature extractor in FedAvg is superior to those in most PFL methods. More interestingly, by applying a linear transformation on local features extracted by the feature extractor to align with the classifier, FedAvg can surpass the majority of PFL methods. This suggests that the primary cause of FedAvg's inadequate performance stems from the mismatch between the locally extracted features and the classifier. While current PFL methods mitigate this issue to some extent, their designs compromise the quality of the feature extractor, thus limiting the full potential of PFL. In this paper, we propose a new PFL framework called FedPFT to address the mismatch problem while enhancing the quality of the feature extractor. FedPFT integrates a feature transformation module, driven by personalized prompts, between the global feature extractor and classifier. In each round, clients first train prompts to transform local features to match the global classifier, followed by training model parameters. This approach can also align the training objectives of clients, reducing the impact of data heterogeneity on model collaboration. Moreover, FedPFT's feature transformation module is highly scalable, allowing for the use of different prompts to tailor local features to various tasks. Leveraging this, we introduce a collaborative contrastive learning task to further refine feature extractor quality. Our experiments demonstrate that FedPFT outperforms state-of-the-art methods by up to 7.08%.
Abstract:Personalized Federated Learning (PFL) is a commonly used framework that allows clients to collaboratively train their personalized models. PFL is particularly useful for handling situations where data from different clients are not independent and identically distributed (non-IID). Previous research in PFL implicitly assumes that clients can gain more benefits from those with similar data distributions. Correspondingly, methods such as personalized weight aggregation are developed to assign higher weights to similar clients during training. We pose a question: can a client benefit from other clients with dissimilar data distributions and if so, how? This question is particularly relevant in scenarios with a high degree of non-IID, where clients have widely different data distributions, and learning from only similar clients will lose knowledge from many other clients. We note that when dealing with clients with similar data distributions, methods such as personalized weight aggregation tend to enforce their models to be close in the parameter space. It is reasonable to conjecture that a client can benefit from dissimilar clients if we allow their models to depart from each other. Based on this idea, we propose DiversiFed which allows each client to learn from clients with diversified data distribution in personalized federated learning. DiversiFed pushes personalized models of clients with dissimilar data distributions apart in the parameter space while pulling together those with similar distributions. In addition, to achieve the above effect without using prior knowledge of data distribution, we design a loss function that leverages the model similarity to determine the degree of attraction and repulsion between any two models. Experiments on several datasets show that DiversiFed can benefit from dissimilar clients and thus outperform the state-of-the-art methods.
Abstract:Due to the selective absorption and scattering of light by diverse aquatic media, underwater images usually suffer from various visual degradations. Existing underwater image enhancement (UIE) approaches that combine underwater physical imaging models with neural networks often fail to accurately estimate imaging model parameters such as depth and veiling light, resulting in poor performance in certain scenarios. To address this issue, we propose a physical model-guided framework for jointly training a Deep Degradation Model (DDM) with any advanced UIE model. DDM includes three well-designed sub-networks to accurately estimate various imaging parameters: a veiling light estimation sub-network, a factors estimation sub-network, and a depth estimation sub-network. Based on the estimated parameters and the underwater physical imaging model, we impose physical constraints on the enhancement process by modeling the relationship between underwater images and desired clean images, i.e., outputs of the UIE model. Moreover, while our framework is compatible with any UIE model, we design a simple yet effective fully convolutional UIE model, termed UIEConv. UIEConv utilizes both global and local features for image enhancement through a dual-branch structure. UIEConv trained within our framework achieves remarkable enhancement results across diverse underwater scenes. Furthermore, as a byproduct of UIE, the trained depth estimation sub-network enables accurate underwater scene depth estimation. Extensive experiments conducted in various real underwater imaging scenarios, including deep-sea environments with artificial light sources, validate the effectiveness of our framework and the UIEConv model.
Abstract:To address data heterogeneity, the key strategy of Personalized Federated Learning (PFL) is to decouple general knowledge (shared among clients) and client-specific knowledge, as the latter can have a negative impact on collaboration if not removed. Existing PFL methods primarily adopt a parameter partitioning approach, where the parameters of a model are designated as one of two types: parameters shared with other clients to extract general knowledge and parameters retained locally to learn client-specific knowledge. However, as these two types of parameters are put together like a jigsaw puzzle into a single model during the training process, each parameter may simultaneously absorb both general and client-specific knowledge, thus struggling to separate the two types of knowledge effectively. In this paper, we introduce FedDecomp, a simple but effective PFL paradigm that employs parameter additive decomposition to address this issue. Instead of assigning each parameter of a model as either a shared or personalized one, FedDecomp decomposes each parameter into the sum of two parameters: a shared one and a personalized one, thus achieving a more thorough decoupling of shared and personalized knowledge compared to the parameter partitioning method. In addition, as we find that retaining local knowledge of specific clients requires much lower model capacity compared with general knowledge across all clients, we let the matrix containing personalized parameters be low rank during the training process. Moreover, a new alternating training strategy is proposed to further improve the performance. Experimental results across multiple datasets and varying degrees of data heterogeneity demonstrate that FedDecomp outperforms state-of-the-art methods up to 4.9\%.