Abstract:Large Multimodal Models (LMMs) have demonstrated impressive capabilities in multimodal understanding and generation, pushing forward advancements in text-to-image generation. However, achieving accurate text-image alignment for LMMs, particularly in compositional scenarios, remains challenging. Existing approaches, such as layout planning for multi-step generation and learning from human feedback or AI feedback, depend heavily on prompt engineering, costly human annotations, and continual upgrading, limiting flexibility and scalability. In this work, we introduce a model-agnostic iterative self-improvement framework (SILMM) that can enable LMMs to provide helpful and scalable self-feedback and optimize text-image alignment via Direct Preference Optimization (DPO). DPO can readily applied to LMMs that use discrete visual tokens as intermediate image representations; while it is less suitable for LMMs with continuous visual features, as obtaining generation probabilities is challenging. To adapt SILMM to LMMs with continuous features, we propose a diversity mechanism to obtain diverse representations and a kernel-based continuous DPO for alignment. Extensive experiments on three compositional text-to-image generation benchmarks validate the effectiveness and superiority of SILMM, showing improvements exceeding 30% on T2I-CompBench++ and around 20% on DPG-Bench.
Abstract:The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise. However, recent defense mechanisms against these attacks have reached near-saturation performance on benchmarks, often with minimal effort. This simultaneous high performance in both attack and defense presents a perplexing paradox. Resolving it is critical for advancing the development of trustworthy models. To address this research gap, we first investigate why VLLMs are prone to these attacks. We then make a key observation: existing defense mechanisms suffer from an \textbf{over-prudence} problem, resulting in unexpected abstention even in the presence of benign inputs. Additionally, we find that the two representative evaluation methods for jailbreak often exhibit chance agreement. This limitation makes it potentially misleading when evaluating attack strategies or defense mechanisms. Beyond these empirical observations, our another contribution in this work is to repurpose the guardrails of LLMs on the shelf, as an effective alternative detector prior to VLLM response. We believe these findings offer useful insights to rethink the foundational development of VLLM safety with respect to benchmark datasets, evaluation methods, and defense strategies.
Abstract:Smartphone agents are increasingly important for helping users control devices efficiently, with (Multimodal) Large Language Model (MLLM)-based approaches emerging as key contenders. Fairly comparing these agents is essential but challenging, requiring a varied task scope, the integration of agents with different implementations, and a generalisable evaluation pipeline to assess their strengths and weaknesses. In this paper, we present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents in an interactive environment that simulates real-world conditions. SPA-Bench offers three key contributions: (1) A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines; (2) A plug-and-play framework enabling real-time agent interaction with Android devices, integrating over ten agents with the flexibility to add more; (3) A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions, encompassing seven metrics related to task completion and resource consumption. Our extensive experiments across tasks and agents reveal challenges like interpreting mobile user interfaces, action grounding, memory retention, and execution costs. We propose future research directions to ease these difficulties, moving closer to real-world smartphone agent applications.
Abstract:Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks. MLLMs involve significant external knowledge within their parameters; however, it is challenging to continually update these models with the latest knowledge, which involves huge computational costs and poor interpretability. Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs. In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs. Considering the redundant information within vision modality, we first leverage the question to instruct the extraction of visual information through interactions with one set of learnable queries, minimizing irrelevant interference during retrieval and generation. Besides, we introduce a pre-trained multimodal adaptive fusion module to achieve question text-to-multimodal retrieval and integration of multimodal knowledge by projecting visual and language modalities into a unified semantic space. Furthermore, we present an Adaptive Selection Knowledge Generation (ASKG) strategy to train the generator to autonomously discern the relevance of retrieved knowledge, which realizes excellent denoising performance. Extensive experiments on open multimodal question-answering datasets demonstrate that RA-BLIP achieves significant performance and surpasses the state-of-the-art retrieval-augmented models.
Abstract:Knowledge distillation is a mainstream algorithm in model compression by transferring knowledge from the larger model (teacher) to the smaller model (student) to improve the performance of student. Despite many efforts, existing methods mainly investigate the consistency between instance-level feature representation or prediction, which neglects the category-level information and the difficulty of each sample, leading to undesirable performance. To address these issues, we propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD). It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers in a contrastive learning fashion, which can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories, contributing to discriminative category centers and better classification results. Besides, we introduce a novel preview strategy to dynamically determine how much the student should learn from each sample according to their difficulty. Different from existing methods that treat all samples equally and curriculum learning that simply filters out hard samples, our method assigns a small weight for hard instances as a preview to better guide the student training. Extensive experiments on several challenging datasets, including CIFAR-100 and ImageNet, demonstrate the superiority over state-of-the-art methods.
Abstract:Text-to-image diffusion models have demonstrated remarkable progress in synthesizing high-quality images from text prompts, which boosts researches on prompt-based image editing that edits a source image according to a target prompt. Despite their advances, existing methods still encounter three key issues: 1) limited capacity of the text prompt in guiding target image generation, 2) insufficient mining of word-to-patch and patch-to-patch relationships for grounding editing areas, and 3) unified editing strength for all regions during each denoising step. To address these issues, we present a Vision-guided and Mask-enhanced Adaptive Editing (ViMAEdit) method with three key novel designs. First, we propose to leverage image embeddings as explicit guidance to enhance the conventional textual prompt-based denoising process, where a CLIP-based target image embedding estimation strategy is introduced. Second, we devise a self-attention-guided iterative editing area grounding strategy, which iteratively exploits patch-to-patch relationships conveyed by self-attention maps to refine those word-to-patch relationships contained in cross-attention maps. Last, we present a spatially adaptive variance-guided sampling, which highlights sampling variances for critical image regions to promote the editing capability. Experimental results demonstrate the superior editing capacity of ViMAEdit over all existing methods.
Abstract:Despite remarkable successes in unimodal learning tasks, backdoor attacks against cross-modal learning are still underexplored due to the limited generalization and inferior stealthiness when involving multiple modalities. Notably, since works in this area mainly inherit ideas from unimodal visual attacks, they struggle with dealing with diverse cross-modal attack circumstances and manipulating imperceptible trigger samples, which hinders their practicability in real-world applications. In this paper, we introduce a novel bilateral backdoor to fill in the missing pieces of the puzzle in the cross-modal backdoor and propose a generalized invisible backdoor framework against cross-modal learning (BadCM). Specifically, a cross-modal mining scheme is developed to capture the modality-invariant components as target poisoning areas, where well-designed trigger patterns injected into these regions can be efficiently recognized by the victim models. This strategy is adapted to different image-text cross-modal models, making our framework available to various attack scenarios. Furthermore, for generating poisoned samples of high stealthiness, we conceive modality-specific generators for visual and linguistic modalities that facilitate hiding explicit trigger patterns in modality-invariant regions. To the best of our knowledge, BadCM is the first invisible backdoor method deliberately designed for diverse cross-modal attacks within one unified framework. Comprehensive experimental evaluations on two typical applications, i.e., cross-modal retrieval and VQA, demonstrate the effectiveness and generalization of our method under multiple kinds of attack scenarios. Moreover, we show that BadCM can robustly evade existing backdoor defenses. Our code is available at https://github.com/xandery-geek/BadCM.
Abstract:Recently, video-language understanding has achieved great success through large-scale pre-training. However, data scarcity remains a prevailing challenge. This study quantitatively reveals an "impossible trinity" among data quantity, diversity, and quality in pre-training datasets. Recent efforts seek to refine large-scale, diverse ASR datasets compromised by low quality through synthetic annotations. These methods successfully leverage useful information in multimodal video content (frames, tags, ASR transcripts, etc.) to refine the original annotations. Nevertheless, they struggle to mitigate noise within synthetic annotations and lack scalability as the dataset size expands. To address these issues, we introduce the Video DataFlywheel framework, which iteratively refines video annotations with improved noise control methods. For iterative refinement, we first leverage a video-language model to generate synthetic annotations, resulting in a refined dataset. Then, we pre-train on it and fine-tune on human refinement examples for a stronger model. These processes are repeated for continuous improvement. For noise control, we present AdaTaiLr, a novel noise control method that requires weaker assumptions on noise distribution, thereby proving more effective in large datasets with theoretical guarantees. The combination of iterative refinement and AdaTaiLr can achieve better scalability in video-language understanding. Extensive experiments show that our framework outperforms existing data refinement baselines, delivering a 3% performance boost and improving dataset quality with minimal diversity loss. Furthermore, our refined dataset facilitates significant improvements in various video-language understanding tasks, including video question answering and text-video retrieval.
Abstract:Transformers have demonstrated great power in the recent development of large foundational models. In particular, the Vision Transformer (ViT) has brought revolutionary changes to the field of vision, achieving significant accomplishments on the experimental side. However, their theoretical capabilities, particularly in terms of generalization when trained to overfit training data, are still not fully understood. To address this gap, this work delves deeply into the benign overfitting perspective of transformers in vision. To this end, we study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model. By developing techniques that address the challenges posed by softmax and the interdependent nature of multiple weights in transformer optimization, we successfully characterized the training dynamics and achieved generalization in post-training. Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model. The theoretical results are further verified by experimental simulation.
Abstract:Diffusion models (DMs) have demonstrated exceptional generative capabilities across various areas, while they are hindered by slow inference speeds and high computational demands during deployment. The most common way to accelerate DMs involves reducing the number of denoising steps during generation, achieved through faster sampling solvers or knowledge distillation (KD). In contrast to prior approaches, we propose a novel method that transfers the capability of large pretrained DMs to faster architectures. Specifically, we employ KD in a distinct manner to compress DMs by distilling their generative ability into more rapid variants. Furthermore, considering that the source data is either unaccessible or too enormous to store for current generative models, we introduce a new paradigm for their distillation without source data, termed Data-Free Knowledge Distillation for Diffusion Models (DKDM). Generally, our established DKDM framework comprises two main components: 1) a DKDM objective that uses synthetic denoising data produced by pretrained DMs to optimize faster DMs without source data, and 2) a dynamic iterative distillation method that flexibly organizes the synthesis of denoising data, preventing it from slowing down the optimization process as the generation is slow. To our knowledge, this is the first attempt at using KD to distill DMs into any architecture in a data-free manner. Importantly, our DKDM is orthogonal to most existing acceleration methods, such as denoising step reduction, quantization and pruning. Experiments show that our DKDM is capable of deriving 2x faster DMs with performance remaining on par with the baseline. Notably, our DKDM enables pretrained DMs to function as "datasets" for training new DMs.