Abstract:Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across diverse tasks. Despite great success, recent studies show that LVLMs encounter substantial limitations when engaging with visual graphs. To study the reason behind these limitations, we propose VGCure, a comprehensive benchmark covering 22 tasks for examining the fundamental graph understanding and reasoning capacities of LVLMs. Extensive evaluations conducted on 14 LVLMs reveal that LVLMs are weak in basic graph understanding and reasoning tasks, particularly those concerning relational or structurally complex information. Based on this observation, we propose a structure-aware fine-tuning framework to enhance LVLMs with structure learning abilities through 3 self-supervised learning tasks. Experiments validate the effectiveness of our method in improving LVLMs' zero-shot performance on fundamental graph learning tasks, as well as enhancing the robustness of LVLMs against complex visual graphs.
Abstract:Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering (KGQA) tasks. However, LLMs often produce ungrounded subgraph planning or reasoning results in KGQA due to the hallucinatory behavior brought by the generative paradigm, which may hinder the advancement of the LLM-based KGQA model. To deal with the issue, we propose a novel LLM-based Discriminative Reasoning (LDR) method to explicitly model the subgraph retrieval and answer inference process. By adopting discriminative strategies, the proposed LDR method not only enhances the capability of LLMs to retrieve question-related subgraphs but also alleviates the issue of ungrounded reasoning brought by the generative paradigm of LLMs. Experimental results show that the proposed approach outperforms multiple strong comparison methods, along with achieving state-of-the-art performance on two widely used WebQSP and CWQ benchmarks.
Abstract:Large language models (LLMs) have demonstrated impressive multilingual understanding and reasoning capabilities, driven by extensive pre-training multilingual corpora and fine-tuning instruction data. However, a performance gap persists between high-resource and low-resource language tasks due to language imbalance in the pre-training corpus, even using more low-resource data during fine-tuning. To alleviate this issue, we propose LinguaLIFT, a two-stage instruction tuning framework for advancing low-resource language tasks. An additional language alignment layer is first integrated into the LLM to adapt a pre-trained multilingual encoder, thereby enhancing multilingual alignment through code-switched fine-tuning. The second stage fine-tunes LLM with English-only instruction data while freezing the language alignment layer, allowing LLM to transfer task-specific capabilities from English to low-resource language tasks. Additionally, we introduce the Multilingual Math World Problem (MMWP) benchmark, which spans 21 low-resource, 17 medium-resource, and 10 high-resource languages, enabling comprehensive evaluation of multilingual reasoning. Experimental results show that LinguaLIFT outperforms several competitive baselines across MMWP and other widely used benchmarks.
Abstract:The remarkable understanding and generation capabilities of large language models (LLMs) have greatly improved translation performance. However, incorrect understanding of the sentence to be translated can degrade translation quality. To address this issue, we proposed a novel Iterative Bilingual Understanding Translation (IBUT) method based on the cross-lingual capabilities of LLMs and the dual characteristics of translation tasks. The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately. Furthermore, the dual characteristics allow IBUT to generate effective cross-lingual feedback, iteratively refining contextual understanding, thereby reducing errors and improving translation performance. Experimental results showed that the proposed IBUT outperforms several strong comparison methods, especially being generalized to multiple domains (e.g., news, commonsense, and cultural translation benchmarks).
Abstract:Knowledge graph question answering (KGQA) involves answering natural language questions by leveraging structured information stored in a knowledge graph. Typically, KGQA initially retrieve a targeted subgraph from a large-scale knowledge graph, which serves as the basis for reasoning models to address queries. However, the retrieved subgraph inevitably brings distraction information for knowledge utilization, impeding the model's ability to perform accurate reasoning. To address this issue, we propose a Question-guided Knowledge Graph Re-scoring method (Q-KGR) to eliminate noisy pathways for the input question, thereby focusing specifically on pertinent factual knowledge. Moreover, we introduce Knowformer, a parameter-efficient method for injecting the re-scored knowledge graph into large language models to enhance their ability to perform factual reasoning. Extensive experiments on multiple KGQA benchmarks demonstrate the superiority of our method over existing systems.
Abstract:With the great advancements in large language models (LLMs), adversarial attacks against LLMs have recently attracted increasing attention. We found that pre-existing adversarial attack methodologies exhibit limited transferability and are notably inefficient, particularly when applied to LLMs. In this paper, we analyze the core mechanisms of previous predominant adversarial attack methods, revealing that 1) the distributions of importance score differ markedly among victim models, restricting the transferability; 2) the sequential attack processes induces substantial time overheads. Based on the above two insights, we introduce a new scheme, named TF-Attack, for Transferable and Fast adversarial attacks on LLMs. TF-Attack employs an external LLM as a third-party overseer rather than the victim model to identify critical units within sentences. Moreover, TF-Attack introduces the concept of Importance Level, which allows for parallel substitutions of attacks. We conduct extensive experiments on 6 widely adopted benchmarks, evaluating the proposed method through both automatic and human metrics. Results show that our method consistently surpasses previous methods in transferability and delivers significant speed improvements, up to 20 times faster than earlier attack strategies.
Abstract:Large language models (LLMs) have shown remarkable performance in general translation tasks. However, the increasing demand for high-quality translations that are not only adequate but also fluent and elegant. To assess the extent to which current LLMs can meet these demands, we introduce a suitable benchmark for translating classical Chinese poetry into English. This task requires not only adequacy in translating culturally and historically significant content but also a strict adherence to linguistic fluency and poetic elegance. Our study reveals that existing LLMs fall short of this task. To address these issues, we propose RAT, a \textbf{R}etrieval-\textbf{A}ugmented machine \textbf{T}ranslation method that enhances the translation process by incorporating knowledge related to classical poetry. Additionally, we propose an automatic evaluation metric based on GPT-4, which better assesses translation quality in terms of adequacy, fluency, and elegance, overcoming the limitations of traditional metrics. Our dataset and code will be made available.
Abstract:The impressive performance of Large Language Models (LLMs) has consistently surpassed numerous human-designed benchmarks, presenting new challenges in assessing the shortcomings of LLMs. Designing tasks and finding LLMs' limitations are becoming increasingly important. In this paper, we investigate the question of whether an LLM can discover its own limitations from the errors it makes. To this end, we propose a Self-Challenge evaluation framework with human-in-the-loop. Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances and incorporate human feedback on them to refine these patterns for generating more challenging data, iteratively. We end up with 8 diverse patterns, such as text manipulation and questions with assumptions. We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses. The SC-G4 serves as a challenging benchmark that allows for a detailed assessment of LLMs' abilities. Our results show that only 44.96\% of instances in SC-G4 can be answered correctly by GPT-4. Interestingly, our pilot study indicates that these error patterns also challenge other LLMs, such as Claude-3 and Llama-3, and cannot be fully resolved through fine-tuning. Our work takes the first step to demonstrate that LLMs can autonomously identify their inherent flaws and provide insights for future dynamic and automatic evaluation.
Abstract:The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning, enhancing LLMs with excellent applicability and effectiveness in a wide range of contexts. Despite the numerous related studies conducted, a perspective on how human preferences are introduced into LLMs remains limited, which may prevent a deeper comprehension of the relationships between human preferences and LLMs as well as the realization of their limitations. In this survey, we review the progress in exploring human preference learning for LLMs from a preference-centered perspective, covering the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs. We first categorize the human feedback according to data sources and formats. We then summarize techniques for human preferences modeling and compare the advantages and disadvantages of different schools of models. Moreover, we present various preference usage methods sorted by the objectives to utilize human preference signals. Finally, we summarize some prevailing approaches to evaluate LLMs in terms of alignment with human intentions and discuss our outlooks on the human intention alignment for LLMs.
Abstract:Large language models (LLMs) have showcased impressive multilingual machine translation ability. However, unlike encoder-decoder style models, decoder-only LLMs lack an explicit alignment between source and target contexts. Analyzing contribution scores during generation processes revealed that LLMs can be biased towards previously generated tokens over corresponding source tokens, leading to unfaithful translations. To address this issue, we propose to encourage LLMs to pay more attention to the source context from both source and target perspectives in zeroshot prompting: 1) adjust source context attention weights; 2) suppress irrelevant target prefix influence; Additionally, we propose 3) avoiding over-reliance on the target prefix in instruction tuning. Experimental results from both human-collected unfaithfulness test sets focusing on LLM-generated unfaithful translations and general test sets, verify our methods' effectiveness across multiple language pairs. Further human evaluation shows our method's efficacy in reducing hallucinatory translations and facilitating faithful translation generation.