Abstract:Cloth-changing person re-identification is a subject closer to the real world, which focuses on solving the problem of person re-identification after pedestrians change clothes. The primary challenge in this field is to overcome the complex interplay between intra-class and inter-class variations and to identify features that remain unaffected by changes in appearance. Sufficient data collection for model training would significantly aid in addressing this problem. However, it is challenging to gather diverse datasets in practice. Current methods focus on implicitly learning identity information from the original image or introducing additional auxiliary models, which are largely limited by the quality of the image and the performance of the additional model. To address these issues, inspired by prompt learning, we propose a novel multiple information prompt learning (MIPL) scheme for cloth-changing person ReID, which learns identity robust features through the common prompt guidance of multiple messages. Specifically, the clothing information stripping (CIS) module is designed to decouple the clothing information from the original RGB image features to counteract the influence of clothing appearance. The Bio-guided attention (BGA) module is proposed to increase the learning intensity of the model for key information. A dual-length hybrid patch (DHP) module is employed to make the features have diverse coverage to minimize the impact of feature bias. Extensive experiments demonstrate that the proposed method outperforms all state-of-the-art methods on the LTCC, Celeb-reID, Celeb-reID-light, and CSCC datasets, achieving rank-1 scores of 74.8%, 73.3%, 66.0%, and 88.1%, respectively. When compared to AIM (CVPR23), ACID (TIP23), and SCNet (MM23), MIPL achieves rank-1 improvements of 11.3%, 13.8%, and 7.9%, respectively, on the PRCC dataset.
Abstract:Text-to-image diffusion models have demonstrated remarkable progress in synthesizing high-quality images from text prompts, which boosts researches on prompt-based image editing that edits a source image according to a target prompt. Despite their advances, existing methods still encounter three key issues: 1) limited capacity of the text prompt in guiding target image generation, 2) insufficient mining of word-to-patch and patch-to-patch relationships for grounding editing areas, and 3) unified editing strength for all regions during each denoising step. To address these issues, we present a Vision-guided and Mask-enhanced Adaptive Editing (ViMAEdit) method with three key novel designs. First, we propose to leverage image embeddings as explicit guidance to enhance the conventional textual prompt-based denoising process, where a CLIP-based target image embedding estimation strategy is introduced. Second, we devise a self-attention-guided iterative editing area grounding strategy, which iteratively exploits patch-to-patch relationships conveyed by self-attention maps to refine those word-to-patch relationships contained in cross-attention maps. Last, we present a spatially adaptive variance-guided sampling, which highlights sampling variances for critical image regions to promote the editing capability. Experimental results demonstrate the superior editing capacity of ViMAEdit over all existing methods.
Abstract:Cropping high-resolution document images into multiple sub-images is the most widely used approach for current Multimodal Large Language Models (MLLMs) to do document understanding. Most of current document understanding methods preserve all tokens within sub-images and treat them equally. This neglects their different informativeness and leads to a significant increase in the number of image tokens. To perform a more adaptive and efficient document understanding, we propose Token-level Correlation-guided Compression, a parameter-free and plug-and-play methodology to optimize token processing. Firstly, we propose an innovative approach for assessing the pattern repetitiveness based on the correlation between each patch tokens. This method identifies redundant tokens, allowing for the determination of the sub-image's information density. Secondly, we present a token-level sampling method that efficiently captures the most informative tokens by delving into the correlation between the [CLS] token and patch tokens. By integrating these strategies, we develop a plug-and-play adaptive compressor module that can be seamlessly incorporated into MLLMs utilizing cropping techniques. This module not only enhances the processing speed during training and inference but also maintains comparable performance. We conduct experiments with the SOTA document understanding model mPLUG-DocOwl1.5 and the effectiveness is demonstrated through extensive comparisons with other compression methods.
Abstract:Multimodal large language models (MLLMs) have demonstrated impressive capabilities across various vision-language tasks. However, a generalist MLLM typically underperforms compared with a specialist MLLM on most VL tasks, which can be attributed to task interference. In this paper, we propose a mixture of multimodal experts (MoME) to mitigate task interference and obtain a generalist MLLM. Our MoME is composed of two key components, a mixture of vision experts (MoVE) and a mixture of language experts (MoLE). MoVE can adaptively modulate the features transformed from various vision encoders, and has a strong compatibility in transformation architecture. MoLE incorporates sparsely gated experts into LLMs to achieve painless improvements with roughly unchanged inference costs. In response to task interference, our MoME specializes in both vision and language modality to adapt to task discrepancies. Extensive experiments show that MoME significantly improves the performance of generalist MLLMs across various VL tasks. The source code is released at https://github.com/JiuTian-VL/MoME
Abstract:Multimodal recommendation aims to recommend user-preferred candidates based on her/his historically interacted items and associated multimodal information. Previous studies commonly employ an embed-and-retrieve paradigm: learning user and item representations in the same embedding space, then retrieving similar candidate items for a user via embedding inner product. However, this paradigm suffers from inference cost, interaction modeling, and false-negative issues. Toward this end, we propose a new MMGRec model to introduce a generative paradigm into multimodal recommendation. Specifically, we first devise a hierarchical quantization method Graph RQ-VAE to assign Rec-ID for each item from its multimodal and CF information. Consisting of a tuple of semantically meaningful tokens, Rec-ID serves as the unique identifier of each item. Afterward, we train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences. The generative paradigm is qualified since this model systematically predicts the tuple of tokens identifying the recommended item in an autoregressive manner. Moreover, a relation-aware self-attention mechanism is devised for the Transformer to handle non-sequential interaction sequences, which explores the element pairwise relation to replace absolute positional encoding. Extensive experiments evaluate MMGRec's effectiveness compared with state-of-the-art methods.
Abstract:Video localization tasks aim to temporally locate specific instances in videos, including temporal action localization (TAL), sound event detection (SED) and audio-visual event localization (AVEL). Existing methods over-specialize on each task, overlooking the fact that these instances often occur in the same video to form the complete video content. In this work, we present UniAV, a Unified Audio-Visual perception network, to achieve joint learning of TAL, SED and AVEL tasks for the first time. UniAV can leverage diverse data available in task-specific datasets, allowing the model to learn and share mutually beneficial knowledge across tasks and modalities. To tackle the challenges posed by substantial variations in datasets (size/domain/duration) and distinct task characteristics, we propose to uniformly encode visual and audio modalities of all videos to derive generic representations, while also designing task-specific experts to capture unique knowledge for each task. Besides, we develop a unified language-aware classifier by utilizing a pre-trained text encoder, enabling the model to flexibly detect various types of instances and previously unseen ones by simply changing prompts during inference. UniAV outperforms its single-task counterparts by a large margin with fewer parameters, achieving on-par or superior performances compared to state-of-the-art task-specific methods across ActivityNet 1.3, DESED and UnAV-100 benchmarks.
Abstract:Multi-interest learning method for sequential recommendation aims to predict the next item according to user multi-faceted interests given the user historical interactions. Existing methods mainly consist of two modules: the multi-interest extraction module that learns user multi-interest embeddings to capture the user multi-interests, and the multi-interest weight prediction module that learns the weight of each interest for aggregating the learned multi-interest embeddings to derive the user embedding, used for predicting the user rating to an item. Despite their effectiveness, existing methods have two key limitations: 1) they directly feed the user interactions into the two modules, while ignoring their different learning objectives, and 2) they merely consider the centrality of the user interactions to learn the user multi-interests, while overlooking their dispersion. To tackle these limitations, we propose a prompt-based multi-interest learning method (PoMRec), where specific prompts are inserted into user interactions to make them adaptive to different learning objectives of the two modules. Moreover, we utilize both the mean and variance embeddings of user interactions to derive the user multi-interest embeddings for comprehensively model the user multi-interests. We conduct extensive experiments on two public datasets, and the results verify that our proposed PoMRec outperforms the state-of-the-art multi-interest learning methods.
Abstract:In contrast to conventional visual question answering, video-grounded dialog necessitates a profound understanding of both dialog history and video content for accurate response generation. Despite commendable strides made by existing methodologies, they often grapple with the challenges of incrementally understanding intricate dialog histories and assimilating video information. In response to this gap, we present an iterative tracking and reasoning strategy that amalgamates a textual encoder, a visual encoder, and a generator. At its core, our textual encoder is fortified with a path tracking and aggregation mechanism, adept at gleaning nuances from dialog history that are pivotal to deciphering the posed questions. Concurrently, our visual encoder harnesses an iterative reasoning network, meticulously crafted to distill and emphasize critical visual markers from videos, enhancing the depth of visual comprehension. Culminating this enriched information, we employ the pre-trained GPT-2 model as our response generator, stitching together coherent and contextually apt answers. Our empirical assessments, conducted on two renowned datasets, testify to the prowess and adaptability of our proposed design.
Abstract:Pre-trained vision-language models, e.g., CLIP, working with manually designed prompts have demonstrated great capacity of transfer learning. Recently, learnable prompts achieve state-of-the-art performance, which however are prone to overfit to seen classes, failing to generalize to unseen classes. In this paper, we propose a Knowledge-Aware Prompt Tuning (KAPT) framework for vision-language models. Our approach takes inspiration from human intelligence in which external knowledge is usually incorporated into recognizing novel categories of objects. Specifically, we design two complementary types of knowledge-aware prompts for the text encoder to leverage the distinctive characteristics of category-related external knowledge. The discrete prompt extracts the key information from descriptions of an object category, and the learned continuous prompt captures overall contexts. We further design an adaptation head for the visual encoder to aggregate salient attentive visual cues, which establishes discriminative and task-aware visual representations. We conduct extensive experiments on 11 widely-used benchmark datasets and the results verify the effectiveness in few-shot image classification, especially in generalizing to unseen categories. Compared with the state-of-the-art CoCoOp method, KAPT exhibits favorable performance and achieves an absolute gain of 3.22% on new classes and 2.57% in terms of harmonic mean.
Abstract:The recently rising markup-to-image generation poses greater challenges as compared to natural image generation, due to its low tolerance for errors as well as the complex sequence and context correlations between markup and rendered image. This paper proposes a novel model named "Contrast-augmented Diffusion Model with Fine-grained Sequence Alignment" (FSA-CDM), which introduces contrastive positive/negative samples into the diffusion model to boost performance for markup-to-image generation. Technically, we design a fine-grained cross-modal alignment module to well explore the sequence similarity between the two modalities for learning robust feature representations. To improve the generalization ability, we propose a contrast-augmented diffusion model to explicitly explore positive and negative samples by maximizing a novel contrastive variational objective, which is mathematically inferred to provide a tighter bound for the model's optimization. Moreover, the context-aware cross attention module is developed to capture the contextual information within markup language during the denoising process, yielding better noise prediction results. Extensive experiments are conducted on four benchmark datasets from different domains, and the experimental results demonstrate the effectiveness of the proposed components in FSA-CDM, significantly exceeding state-of-the-art performance by about 2%-12% DTW improvements. The code will be released at https://github.com/zgj77/FSACDM.