Abstract:Building a general-purpose agent is a long-standing vision in the field of artificial intelligence. Existing agents have made remarkable progress in many domains, yet they still struggle to complete long-horizon tasks in an open world. We attribute this to the lack of necessary world knowledge and multimodal experience that can guide agents through a variety of long-horizon tasks. In this paper, we propose a Hybrid Multimodal Memory module to address the above challenges. It 1) transforms knowledge into Hierarchical Directed Knowledge Graph that allows agents to explicitly represent and learn world knowledge, and 2) summarises historical information into Abstracted Multimodal Experience Pool that provide agents with rich references for in-context learning. On top of the Hybrid Multimodal Memory module, a multimodal agent, Optimus-1, is constructed with dedicated Knowledge-guided Planner and Experience-Driven Reflector, contributing to a better planning and reflection in the face of long-horizon tasks in Minecraft. Extensive experimental results show that Optimus-1 significantly outperforms all existing agents on challenging long-horizon task benchmarks, and exhibits near human-level performance on many tasks. In addition, we introduce various Multimodal Large Language Models (MLLMs) as the backbone of Optimus-1. Experimental results show that Optimus-1 exhibits strong generalization with the help of the Hybrid Multimodal Memory module, outperforming the GPT-4V baseline on many tasks.
Abstract:In this report, we present our champion solution for Ego4D EgoSchema Challenge in CVPR 2024. To deeply integrate the powerful egocentric captioning model and question reasoning model, we propose a novel Hierarchical Comprehension scheme for egocentric video Question Answering, named HCQA. It consists of three stages: Fine-grained Caption Generation, Context-driven Summarization, and Inference-guided Answering. Given a long-form video, HCQA captures local detailed visual information and global summarised visual information via Fine-grained Caption Generation and Context-driven Summarization, respectively. Then in Inference-guided Answering, HCQA utilizes this hierarchical information to reason and answer given question. On the EgoSchema blind test set, HCQA achieves 75% accuracy in answering over 5,000 human curated multiple-choice questions. Our code will be released at https://github.com/Hyu-Zhang/HCQA.
Abstract:In this report, we present our approach for the Natural Language Query track and Goal Step track of the Ego4D Episodic Memory Benchmark at CVPR 2024. Both challenges require the localization of actions within long video sequences using textual queries. To enhance localization accuracy, our method not only processes the temporal information of videos but also identifies fine-grained objects spatially within the frames. To this end, we introduce a novel approach, termed ObjectNLQ, which incorporates an object branch to augment the video representation with detailed object information, thereby improving grounding efficiency. ObjectNLQ achieves a mean R@1 of 23.15, ranking 2nd in the Natural Language Queries Challenge, and gains 33.00 in terms of the metric R@1, IoU=0.3, ranking 3rd in the Goal Step Challenge. Our code will be released at https://github.com/Yisen-Feng/ObjectNLQ.
Abstract:The Emotional Generation is a subset of emotional intelligence, which aims to output an emotional response based on emotional conditions as input. Emotion generation has a wide range of applications, including emotion chat, emotional visual caption, and emotional rewriting. However, it faces challenges such as a lack of interpretability and poor evaluability. In this paper, we propose the Emotional Chain-of-Thought (ECoT), a plug-and-play prompting method that enhances the performance of Large Language Models (LLMs) on various emotional generation tasks by aligning with human emotional intelligence guidelines. To assess the reliability of ECoT, we propose an automated model-based evaluation method called EGS. Extensive experimental results demonstrate the effectiveness of ECoT and EGS. Further,we discuss the promise of LLMs in the field of sentiment analysis and present key insights into the LLMs with the ECoT in emotional generation tasks.
Abstract:Sentiment analysis is a crucial task that aims to understand people's emotional states and predict emotional categories based on multimodal information. It consists of several subtasks, such as emotion recognition in conversation (ERC), aspect-based sentiment analysis (ABSA), and multimodal sentiment analysis (MSA). However, unifying all subtasks in sentiment analysis presents numerous challenges, including modality alignment, unified input/output forms, and dataset bias. To address these challenges, we propose a Task-Specific Prompt method to jointly model subtasks and introduce a multimodal generative framework called UniSA. Additionally, we organize the benchmark datasets of main subtasks into a new Sentiment Analysis Evaluation benchmark, SAEval. We design novel pre-training tasks and training methods to enable the model to learn generic sentiment knowledge among subtasks to improve the model's multimodal sentiment perception ability. Our experimental results show that UniSA performs comparably to the state-of-the-art on all subtasks and generalizes well to various subtasks in sentiment analysis.
Abstract:Emotion recognition in conversation (ERC) aims to analyze the speaker's state and identify their emotion in the conversation. Recent works in ERC focus on context modeling but ignore the representation of contextual emotional tendency. In order to extract multi-modal information and the emotional tendency of the utterance effectively, we propose a new structure named Emoformer to extract multi-modal emotion vectors from different modalities and fuse them with sentence vector to be an emotion capsule. Furthermore, we design an end-to-end ERC model called EmoCaps, which extracts emotion vectors through the Emoformer structure and obtain the emotion classification results from a context analysis model. Through the experiments with two benchmark datasets, our model shows better performance than the existing state-of-the-art models.
Abstract:For the task of conversation emotion recognition, recent works focus on speaker relationship modeling but ignore the role of utterance's emotional tendency.In this paper, we propose a new expression paradigm of sentence-level emotion orientation vector to model the potential correlation of emotions between sentence vectors. Based on it, we design an emotion recognition model, which extracts the sentence-level emotion orientation vectors from the language model and jointly learns from the dialogue sentiment analysis model and extracted sentence-level emotion orientation vectors to identify the speaker's emotional orientation during the conversation. We conduct experiments on two benchmark datasets and compare them with the five baseline models.The experimental results show that our model has better performance on all data sets.