Abstract:Recent advancements in text-to-image (T2I) generation using diffusion models have enabled cost-effective video-editing applications by leveraging pre-trained models, eliminating the need for resource-intensive training. However, the frame-independence of T2I generation often results in poor temporal consistency. Existing methods address this issue through temporal layer fine-tuning or inference-based temporal propagation, but these approaches suffer from high training costs or limited temporal coherence. To address these challenges, we propose a General and Efficient Adapter (GE-Adapter) that integrates temporal-spatial and semantic consistency with Baliteral DDIM inversion. This framework introduces three key components: (1) Frame-based Temporal Consistency Blocks (FTC Blocks) to capture frame-specific features and enforce smooth inter-frame transitions via temporally-aware loss functions; (2) Channel-dependent Spatial Consistency Blocks (SCD Blocks) employing bilateral filters to enhance spatial coherence by reducing noise and artifacts; and (3) Token-based Semantic Consistency Module (TSC Module) to maintain semantic alignment using shared prompt tokens and frame-specific tokens. Our method significantly improves perceptual quality, text-image alignment, and temporal coherence, as demonstrated on the MSR-VTT dataset. Additionally, it achieves enhanced fidelity and frame-to-frame coherence, offering a practical solution for T2V editing.
Abstract:Decentralized Federated Learning has emerged as an alternative to centralized architectures due to its faster training, privacy preservation, and reduced communication overhead. In decentralized communication, the server aggregation phase in Centralized Federated Learning shifts to the client side, which means that clients connect with each other in a peer-to-peer manner. However, compared to the centralized mode, data heterogeneity in Decentralized Federated Learning will cause larger variances between aggregated models, which leads to slow convergence in training and poor generalization performance in tests. To address these issues, we introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata. It consists of two main components: the Moreau envelope function, which primarily addresses parameter inconsistencies among clients caused by data heterogeneity, and Nesterov's extrapolation step, which accelerates the aggregation phase. Theoretically, we prove the optimization error bound and generalization error bound of the algorithm, providing a further understanding of the nature of the algorithm and the theoretical perspectives on the hyperparameter choice. Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions. Furthermore, we also experimentally verify the theoretical properties of DFedCata.
Abstract:Decentralized Federated Learning (DFL) surpasses Centralized Federated Learning (CFL) in terms of faster training, privacy preservation, and light communication, making it a promising alternative in the field of federated learning. However, DFL still exhibits significant disparities with CFL in terms of generalization ability such as rarely theoretical understanding and degraded empirical performance due to severe inconsistency. In this paper, we enhance the consistency of DFL by developing an opposite lookahead enhancement technique (Ole), yielding OledFL to optimize the initialization of each client in each communication round, thus significantly improving both the generalization and convergence speed. Moreover, we rigorously establish its convergence rate in non-convex setting and characterize its generalization bound through uniform stability, which provides concrete reasons why OledFL can achieve both the fast convergence speed and high generalization ability. Extensive experiments conducted on the CIFAR10 and CIFAR100 datasets with Dirichlet and Pathological distributions illustrate that our OledFL can achieve up to 5\% performance improvement and 8$\times$ speedup, compared to the most popular DFedAvg optimizer in DFL.
Abstract:Transformers have demonstrated great power in the recent development of large foundational models. In particular, the Vision Transformer (ViT) has brought revolutionary changes to the field of vision, achieving significant accomplishments on the experimental side. However, their theoretical capabilities, particularly in terms of generalization when trained to overfit training data, are still not fully understood. To address this gap, this work delves deeply into the benign overfitting perspective of transformers in vision. To this end, we study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model. By developing techniques that address the challenges posed by softmax and the interdependent nature of multiple weights in transformer optimization, we successfully characterized the training dynamics and achieved generalization in post-training. Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model. The theoretical results are further verified by experimental simulation.
Abstract:Diffusion models (DMs) have demonstrated exceptional generative capabilities across various areas, while they are hindered by slow inference speeds and high computational demands during deployment. The most common way to accelerate DMs involves reducing the number of denoising steps during generation, achieved through faster sampling solvers or knowledge distillation (KD). In contrast to prior approaches, we propose a novel method that transfers the capability of large pretrained DMs to faster architectures. Specifically, we employ KD in a distinct manner to compress DMs by distilling their generative ability into more rapid variants. Furthermore, considering that the source data is either unaccessible or too enormous to store for current generative models, we introduce a new paradigm for their distillation without source data, termed Data-Free Knowledge Distillation for Diffusion Models (DKDM). Generally, our established DKDM framework comprises two main components: 1) a DKDM objective that uses synthetic denoising data produced by pretrained DMs to optimize faster DMs without source data, and 2) a dynamic iterative distillation method that flexibly organizes the synthesis of denoising data, preventing it from slowing down the optimization process as the generation is slow. To our knowledge, this is the first attempt at using KD to distill DMs into any architecture in a data-free manner. Importantly, our DKDM is orthogonal to most existing acceleration methods, such as denoising step reduction, quantization and pruning. Experiments show that our DKDM is capable of deriving 2x faster DMs with performance remaining on par with the baseline. Notably, our DKDM enables pretrained DMs to function as "datasets" for training new DMs.
Abstract:Generating high-fidelity, temporally consistent videos in autonomous driving scenarios faces a significant challenge, e.g. problematic maneuvers in corner cases. Despite recent video generation works are proposed to tackcle the mentioned problem, i.e. models built on top of Diffusion Transformers (DiT), works are still missing which are targeted on exploring the potential for multi-view videos generation scenarios. Noticeably, we propose the first DiT-based framework specifically designed for generating temporally and multi-view consistent videos which precisely match the given bird's-eye view layouts control. Specifically, the proposed framework leverages a parameter-free spatial view-inflated attention mechanism to guarantee the cross-view consistency, where joint cross-attention modules and ControlNet-Transformer are integrated to further improve the precision of control. To demonstrate our advantages, we extensively investigate the qualitative comparisons on nuScenes dataset, particularly in some most challenging corner cases. In summary, the effectiveness of our proposed method in producing long, controllable, and highly consistent videos under difficult conditions is proven to be effective.
Abstract:Automatic and precise medical image segmentation (MIS) is of vital importance for clinical diagnosis and analysis. Current MIS methods mainly rely on the convolutional neural network (CNN) or self-attention mechanism (Transformer) for feature modeling. However, CNN-based methods suffer from the inaccurate localization owing to the limited global dependency while Transformer-based methods always present the coarse boundary for the lack of local emphasis. Although some CNN-Transformer hybrid methods are designed to synthesize the complementary local and global information for better performance, the combination of CNN and Transformer introduces numerous parameters and increases the computation cost. To this end, this paper proposes a CNN-Transformer rectified collaborative learning (CTRCL) framework to learn stronger CNN-based and Transformer-based models for MIS tasks via the bi-directional knowledge transfer between them. Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels for accurate knowledge transfer in the logit space. We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space by granting their intermediate features the similar capability of category perception. Extensive experiments on three popular MIS benchmarks demonstrate that our CTRCL outperforms most state-of-the-art collaborative learning methods under different evaluation metrics.
Abstract:The rapid evolution of deep learning and its integration with autonomous driving systems have led to substantial advancements in 3D perception using multimodal sensors. Notably, radar sensors show greater robustness compared to cameras and lidar under adverse weather and varying illumination conditions. This study delves into the often-overlooked yet crucial issue of domain shift in 4D radar-based object detection, examining how varying environmental conditions, such as different weather patterns and road types, impact 3D object detection performance. Our findings highlight distinct domain shifts across various weather scenarios, revealing unique dataset sensitivities that underscore the critical role of radar point cloud generation. Additionally, we demonstrate that transitioning between different road types, especially from highways to urban settings, introduces notable domain shifts, emphasizing the necessity for diverse data collection across varied road environments. To the best of our knowledge, this is the first comprehensive analysis of domain shift effects on 4D radar-based object detection. We believe this empirical study contributes to understanding the complex nature of domain shifts in radar data and suggests paths forward for data collection strategy in the face of environmental variability.
Abstract:As Large Language Models (LLMs) grow dramatically in size, there is an increasing trend in compressing and speeding up these models. Previous studies have highlighted the usefulness of gradients for importance scoring in neural network compressing, especially in pruning medium-size networks. However, the substantial memory requirements involved in calculating gradients with backpropagation impede the utilization of gradients in guiding LLM pruning. As a result, most pruning strategies for LLMs rely on gradient-free criteria, such as weight magnitudes or a mix of magnitudes and activations. In this paper, we devise a hybrid pruning criterion, which appropriately integrates magnitude, activation, and gradient to capitalize on feature map sensitivity for pruning LLMs. To overcome memory requirement barriers, we estimate gradients using only forward passes. Based on this, we propose a Memory-effIcieNt structured prunIng procedure for LLMs (MINI-LLM) to remove no-critical channels and multi-attention heads. Experimental results demonstrate the superior performance of MINI-LLM over existing gradient-free methods on three LLMs: LLaMA, BLOOM, and OPT across various downstream tasks (classification, multiple-choice, and generation), while MINI-LLM maintains a GPU memory footprint akin to gradient-free methods.
Abstract:Recently, the Diffusion Probabilistic Model (DPM)-based methods have achieved substantial success in the field of medical image segmentation. However, most of these methods fail to enable the diffusion model to learn edge features and non-edge features effectively and to inject them efficiently into the diffusion backbone. Additionally, the domain gap between the images features and the diffusion model features poses a great challenge to prostate segmentation. In this paper, we proposed CriDiff, a two-stage feature injecting framework with a Crisscross Injection Strategy (CIS) and a Generative Pre-train (GP) approach for prostate segmentation. The CIS maximizes the use of multi-level features by efficiently harnessing the complementarity of high and low-level features. To effectively learn multi-level of edge features and non-edge features, we proposed two parallel conditioners in the CIS: the Boundary Enhance Conditioner (BEC) and the Core Enhance Conditioner (CEC), which discriminatively model the image edge regions and non-edge regions, respectively. Moreover, the GP approach eases the inconsistency between the images features and the diffusion model without adding additional parameters. Extensive experiments on four benchmark datasets demonstrate the effectiveness of the proposed method and achieve state-of-the-art performance on four evaluation metrics.