Abstract:Literature research, vital for scientific advancement, is overwhelmed by the vast ocean of available information. Addressing this, we propose an automated review generation method based on Large Language Models (LLMs) to streamline literature processing and reduce cognitive load. In case study on propane dehydrogenation (PDH) catalysts, our method swiftly generated comprehensive reviews from 343 articles, averaging seconds per article per LLM account. Extended analysis of 1041 articles provided deep insights into catalysts' composition, structure, and performance. Recognizing LLMs' hallucinations, we employed a multi-layered quality control strategy, ensuring our method's reliability and effective hallucination mitigation. Expert verification confirms the accuracy and citation integrity of generated reviews, demonstrating LLM hallucination risks reduced to below 0.5% with over 95% confidence. Released Windows application enables one-click review generation, aiding researchers in tracking advancements and recommending literature. This approach showcases LLMs' role in enhancing scientific research productivity and sets the stage for further exploration.
Abstract:Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data. However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations. Moreover, the data used for pretraining foundation models are usually invisible and very different from the target data of downstream tasks. This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task that has a quite different architecture with only downstream target data. Existing transfer learning or knowledge distillation methods depend on either the same model structure or finetuning of the foundation model. Thus, naively introducing these methods can be either infeasible or very inefficient. To address this, we propose a Task-Driven Model Reprogramming (TDMR) framework. Specifically, we reprogram the foundation model to project the knowledge into a proxy space, which alleviates the adverse effect of task mismatch and domain inconsistency. Then, we reprogram the target model via progressive distillation from the proxy space to efficiently learn the knowledge from the reprogrammed foundation model. TDMR is compatible with different pre-trained model types (CNN, transformer or their mix) and limited target data, and promotes the wide applications of vision foundation models to downstream tasks in a cost-effective manner. Extensive experiments on different downstream classification tasks and target model structures demonstrate the effectiveness of our methods with both CNNs and transformer foundation models.