Abstract:Learning and improving large language models through human preference feedback has become a mainstream approach, but it has rarely been applied to the field of low-light image enhancement. Existing low-light enhancement evaluations typically rely on objective metrics (such as FID, PSNR, etc.), which often result in models that perform well objectively but lack aesthetic quality. Moreover, most low-light enhancement models are primarily designed for global brightening, lacking detailed refinement. Therefore, the generated images often require additional local adjustments, leading to research gaps in practical applications. To bridge this gap, we propose the following innovations: 1) We collect human aesthetic evaluation text pairs and aesthetic scores from multiple low-light image datasets (e.g., LOL, LOL2, LOM, DCIM, MEF, etc.) to train a low-light image aesthetic evaluation model, supplemented by an optimization algorithm designed to fine-tune the diffusion model. 2) We propose a prompt-driven brightness adjustment module capable of performing fine-grained brightness and aesthetic adjustments for specific instances or regions. 3) We evaluate our method alongside existing state-of-the-art algorithms on mainstream benchmarks. Experimental results show that our method not only outperforms traditional methods in terms of visual quality but also provides greater flexibility and controllability, paving the way for improved aesthetic quality.
Abstract:Deep learning-based image enhancement methods show significant advantages in reducing noise and improving visibility in low-light conditions. These methods are typically based on one-to-one mapping, where the model learns a direct transformation from low light to specific enhanced images. Therefore, these methods are inflexible as they do not allow highly personalized mapping, even though an individual's lighting preferences are inherently personalized. To overcome these limitations, we propose a new light enhancement task and a new framework that provides customized lighting control through prompt-driven, semantic-level, and quantitative brightness adjustments. The framework begins by leveraging a Large Language Model (LLM) to understand natural language prompts, enabling it to identify target objects for brightness adjustments. To localize these target objects, the Retinex-based Reasoning Segment (RRS) module generates precise target localization masks using reflection images. Subsequently, the Text-based Brightness Controllable (TBC) module adjusts brightness levels based on the generated illumination map. Finally, an Adaptive Contextual Compensation (ACC) module integrates multi-modal inputs and controls a conditional diffusion model to adjust the lighting, ensuring seamless and precise enhancements accurately. Experimental results on benchmark datasets demonstrate our framework's superior performance at increasing visibility, maintaining natural color balance, and amplifying fine details without creating artifacts. Furthermore, its robust generalization capabilities enable complex semantic-level lighting adjustments in diverse open-world environments through natural language interactions.
Abstract:Time series forecasting is a long-standing challenge due to the real-world information is in various scenario (e.g., energy, weather, traffic, economics, earthquake warning). However some mainstream forecasting model forecasting result is derailed dramatically from ground truth. We believe it's the reason that model's lacking ability of capturing frequency information which richly contains in real world datasets. At present, the mainstream frequency information extraction methods are Fourier transform(FT) based. However, use of FT is problematic due to Gibbs phenomenon. If the values on both sides of sequences differ significantly, oscillatory approximations are observed around both sides and high frequency noise will be introduced. Therefore We propose a novel frequency enhanced channel attention that adaptively modelling frequency interdependencies between channels based on Discrete Cosine Transform which would intrinsically avoid high frequency noise caused by problematic periodity during Fourier Transform, which is defined as Gibbs Phenomenon. We show that this network generalize extremely effectively across six real-world datasets and achieve state-of-the-art performance, we further demonstrate that frequency enhanced channel attention mechanism module can be flexibly applied to different networks. This module can improve the prediction ability of existing mainstream networks, which reduces 35.99% MSE on LSTM, 10.01% on Reformer, 8.71% on Informer, 8.29% on Autoformer, 8.06% on Transformer, etc., at a slight computational cost ,with just a few line of code. Our codes and data are available at https://github.com/Zero-coder/FECAM.