Abstract:Document-level relation extraction (DocRE) is the process of identifying and extracting relations between entities that span multiple sentences within a document. Due to its realistic settings, DocRE has garnered increasing research attention in recent years. Previous research has mostly focused on developing sophisticated encoding models to better capture the intricate patterns between entity pairs. While these advancements are undoubtedly crucial, an even more foundational challenge lies in the data itself. The complexity inherent in DocRE makes the labeling process prone to errors, compounded by the extreme sparsity of positive relation samples, which is driven by both the limited availability of positive instances and the broad diversity of positive relation types. These factors can lead to biased optimization processes, further complicating the task of accurate relation extraction. Recognizing these challenges, we have developed a robust framework called \textit{\textbf{COMM}} to better solve DocRE. \textit{\textbf{COMM}} operates by initially employing an instance-aware reasoning method to dynamically capture pertinent information of entity pairs within the document and extract relational features. Following this, \textit{\textbf{COMM}} takes into account the distribution of relations and the difficulty of samples to dynamically adjust the margins between prediction logits and the decision threshold, a process we call Concentrated Margin Maximization. In this way, \textit{\textbf{COMM}} not only enhances the extraction of relevant relational features but also boosts DocRE performance by addressing the specific challenges posed by the data. Extensive experiments and analysis demonstrate the versatility and effectiveness of \textit{\textbf{COMM}}, especially its robustness when trained on low-quality data (achieves \textgreater 10\% performance gains).
Abstract:Large Language Models (LLMs) have demonstrated remarkable instruction-following capabilities across various applications. However, their performance in multilingual settings remains poorly understood, as existing evaluations lack fine-grained constraint analysis. We introduce XIFBench, a comprehensive constraint-based benchmark for assessing multilingual instruction-following abilities of LLMs, featuring a novel taxonomy of five constraint categories and 465 parallel instructions across six languages spanning different resource levels. To ensure consistent cross-lingual evaluation, we develop a requirement-based protocol that leverages English requirements as semantic anchors. These requirements are then used to validate the translations across languages. Extensive experiments with various LLMs reveal notable variations in instruction-following performance across resource levels, identifying key influencing factors such as constraint categories, instruction complexity, and cultural specificity.
Abstract:Mobile robots necessitate advanced natural language understanding capabilities to accurately identify locations and perform tasks such as package delivery. However, traditional visual place recognition (VPR) methods rely solely on single-view visual information and cannot interpret human language descriptions. To overcome this challenge, we bridge text and vision by proposing a multiview (360{\deg} views of the surroundings) text-vision registration approach called Text4VPR for place recognition task, which is the first method that exclusively utilizes textual descriptions to match a database of images. Text4VPR employs the frozen T5 language model to extract global textual embeddings. Additionally, it utilizes the Sinkhorn algorithm with temperature coefficient to assign local tokens to their respective clusters, thereby aggregating visual descriptors from images. During the training stage, Text4VPR emphasizes the alignment between individual text-image pairs for precise textual description. In the inference stage, Text4VPR uses the Cascaded Cross-Attention Cosine Alignment (CCCA) to address the internal mismatch between text and image groups. Subsequently, Text4VPR performs precisely place match based on the descriptions of text-image groups. On Street360Loc, the first text to image VPR dataset we created, Text4VPR builds a robust baseline, achieving a leading top-1 accuracy of 57% and a leading top-10 accuracy of 92% within a 5-meter radius on the test set, which indicates that localization from textual descriptions to images is not only feasible but also holds significant potential for further advancement, as shown in Figure 1.
Abstract:This paper proposes DoubleDiffusion, a novel framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces. Our approach addresses the challenges of generating continuous signal distributions residing on a curve manifold surface. Unlike previous methods that rely on unrolling 3D meshes into 2D or adopting field representations, DoubleDiffusion leverages the Laplacian-Beltrami operator to process features respecting the mesh structure. This combination enables effective geometry-aware signal diffusion across the underlying geometry. As shown in Fig.~\ref{fig:teaser}, we demonstrate that DoubleDiffusion has the ability to generate RGB signal distributions on complex 3D mesh surfaces and achieves per-category shape-conditioned texture generation across different shape geometry. Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
Abstract:While current high-resolution depth estimation methods achieve strong results, they often suffer from computational inefficiencies due to reliance on heavyweight models and multiple inference steps, increasing inference time. To address this, we introduce PatchRefiner V2 (PRV2), which replaces heavy refiner models with lightweight encoders. This reduces model size and inference time but introduces noisy features. To overcome this, we propose a Coarse-to-Fine (C2F) module with a Guided Denoising Unit for refining and denoising the refiner features and a Noisy Pretraining strategy to pretrain the refiner branch to fully exploit the potential of the lightweight refiner branch. Additionally, we introduce a Scale-and-Shift Invariant Gradient Matching (SSIGM) loss to enhance synthetic-to-real domain transfer. PRV2 outperforms state-of-the-art depth estimation methods on UnrealStereo4K in both accuracy and speed, using fewer parameters and faster inference. It also shows improved depth boundary delineation on real-world datasets like CityScape, ScanNet++, and KITTI, demonstrating its versatility across domains.
Abstract:Amodal depth estimation aims to predict the depth of occluded (invisible) parts of objects in a scene. This task addresses the question of whether models can effectively perceive the geometry of occluded regions based on visible cues. Prior methods primarily rely on synthetic datasets and focus on metric depth estimation, limiting their generalization to real-world settings due to domain shifts and scalability challenges. In this paper, we propose a novel formulation of amodal depth estimation in the wild, focusing on relative depth prediction to improve model generalization across diverse natural images. We introduce a new large-scale dataset, Amodal Depth In the Wild (ADIW), created using a scalable pipeline that leverages segmentation datasets and compositing techniques. Depth maps are generated using large pre-trained depth models, and a scale-and-shift alignment strategy is employed to refine and blend depth predictions, ensuring consistency in ground-truth annotations. To tackle the amodal depth task, we present two complementary frameworks: Amodal-DAV2, a deterministic model based on Depth Anything V2, and Amodal-DepthFM, a generative model that integrates conditional flow matching principles. Our proposed frameworks effectively leverage the capabilities of large pre-trained models with minimal modifications to achieve high-quality amodal depth predictions. Experiments validate our design choices, demonstrating the flexibility of our models in generating diverse, plausible depth structures for occluded regions. Our method achieves a 69.5% improvement in accuracy over the previous SoTA on the ADIW dataset.
Abstract:Generating high-quality stereo videos that mimic human binocular vision requires maintaining consistent depth perception and temporal coherence across frames. While diffusion models have advanced image and video synthesis, generating high-quality stereo videos remains challenging due to the difficulty of maintaining consistent temporal and spatial coherence between left and right views. We introduce \textit{StereoCrafter-Zero}, a novel framework for zero-shot stereo video generation that leverages video diffusion priors without the need for paired training data. Key innovations include a noisy restart strategy to initialize stereo-aware latents and an iterative refinement process that progressively harmonizes the latent space, addressing issues like temporal flickering and view inconsistencies. Comprehensive evaluations, including quantitative metrics and user studies, demonstrate that \textit{StereoCrafter-Zero} produces high-quality stereo videos with improved depth consistency and temporal smoothness, even when depth estimations are imperfect. Our framework is robust and adaptable across various diffusion models, setting a new benchmark for zero-shot stereo video generation and enabling more immersive visual experiences. Our code can be found in~\url{https://github.com/shijianjian/StereoCrafter-Zero}.
Abstract:Vision Language Place Recognition (VLVPR) enhances robot localization performance by incorporating natural language descriptions from images. By utilizing language information, VLVPR directs robot place matching, overcoming the constraint of solely depending on vision. The essence of multimodal fusion lies in mining the complementary information between different modalities. However, general fusion methods rely on traditional neural architectures and are not well equipped to capture the dynamics of cross modal interactions, especially in the presence of complex intra modal and inter modal correlations. To this end, this paper proposes a novel coarse to fine and end to end connected cross modal place recognition framework, called MambaPlace. In the coarse localization stage, the text description and 3D point cloud are encoded by the pretrained T5 and instance encoder, respectively. They are then processed using Text Attention Mamba (TAM) and Point Clouds Mamba (PCM) for data enhancement and alignment. In the subsequent fine localization stage, the features of the text description and 3D point cloud are cross modally fused and further enhanced through cascaded Cross Attention Mamba (CCAM). Finally, we predict the positional offset from the fused text point cloud features, achieving the most accurate localization. Extensive experiments show that MambaPlace achieves improved localization accuracy on the KITTI360Pose dataset compared to the state of the art methods.
Abstract:Empowering LLMs with the ability to utilize useful information from a long context is crucial for many downstream applications. However, achieving long context lengths with the conventional transformer architecture requires substantial training and inference resources. In this paper, we present FocusLLM, a framework designed to extend the context length of any decoder-only LLM, enabling the model to focus on relevant information from very long sequences. FocusLLM processes long text inputs by dividing them into chunks based on the model's original context length to alleviate the issue of attention distraction. Then, it appends the local context to each chunk as a prompt to extract essential information from each chunk based on a novel parallel decoding mechanism, and ultimately integrates the extracted information into the local context. FocusLLM stands out for great training efficiency and versatility: trained with an 8K input length with much less training cost than previous methods, FocusLLM exhibits superior performance across downstream long-context tasks and maintains strong language modeling ability when handling extensive long texts, even up to 400K tokens. Our code is available at https://github.com/leezythu/FocusLLM.
Abstract:In the design of a metasurface-assisted system for indoor environments, it is essential to take into account not only the performance gains and coverage extension provided by the metasurface but also the operating costs brought by its reconfigurability, such as powering and cabling. These costs can present challenges, particularly in indoor dense spaces (IDSs). A self-sustainable metasurface (SSM), which retains reconfigurability unlike a static metasurface (SMS), achieves a lower operating cost than a reconfigurable intelligent surface (RIS) by being self-sustainable through power harvesting. In this paper, in order to find a better trade-off between metasurface gain, coverage, and operating cost, the design and performance of an SSM-assisted indoor mmWave communication system are investigated. We first simplify the design of the SSM-assisted system by considering the use of SSMs in a preset-based manner and the formation of coverage groups by associating SSMs with the closest user equipments (UEs). We propose a two-stage iterative algorithm to maximize the minimum data rate in the system by jointly deciding the association between the UEs and the SSMs, the phase-shifts of the SSMs, and allocating time resources for each UE. The non-convexities that exist in the proposed optimization problem are tackled using the feasible point pursuit successive convex approximation method and the concave-convex procedure. To understand the best scenario for using SSM, the resulting performance is compared with that achieved with RIS and SMS. Our numerical results indicate that SSMs are best utilized in a small environment where self-sustainability is easier to achieve when the budget for operating costs is tight.