Abstract:Vision Language Place Recognition (VLVPR) enhances robot localization performance by incorporating natural language descriptions from images. By utilizing language information, VLVPR directs robot place matching, overcoming the constraint of solely depending on vision. The essence of multimodal fusion lies in mining the complementary information between different modalities. However, general fusion methods rely on traditional neural architectures and are not well equipped to capture the dynamics of cross modal interactions, especially in the presence of complex intra modal and inter modal correlations. To this end, this paper proposes a novel coarse to fine and end to end connected cross modal place recognition framework, called MambaPlace. In the coarse localization stage, the text description and 3D point cloud are encoded by the pretrained T5 and instance encoder, respectively. They are then processed using Text Attention Mamba (TAM) and Point Clouds Mamba (PCM) for data enhancement and alignment. In the subsequent fine localization stage, the features of the text description and 3D point cloud are cross modally fused and further enhanced through cascaded Cross Attention Mamba (CCAM). Finally, we predict the positional offset from the fused text point cloud features, achieving the most accurate localization. Extensive experiments show that MambaPlace achieves improved localization accuracy on the KITTI360Pose dataset compared to the state of the art methods.
Abstract:Empowering LLMs with the ability to utilize useful information from a long context is crucial for many downstream applications. However, achieving long context lengths with the conventional transformer architecture requires substantial training and inference resources. In this paper, we present FocusLLM, a framework designed to extend the context length of any decoder-only LLM, enabling the model to focus on relevant information from very long sequences. FocusLLM processes long text inputs by dividing them into chunks based on the model's original context length to alleviate the issue of attention distraction. Then, it appends the local context to each chunk as a prompt to extract essential information from each chunk based on a novel parallel decoding mechanism, and ultimately integrates the extracted information into the local context. FocusLLM stands out for great training efficiency and versatility: trained with an 8K input length with much less training cost than previous methods, FocusLLM exhibits superior performance across downstream long-context tasks and maintains strong language modeling ability when handling extensive long texts, even up to 400K tokens. Our code is available at https://github.com/leezythu/FocusLLM.
Abstract:In the design of a metasurface-assisted system for indoor environments, it is essential to take into account not only the performance gains and coverage extension provided by the metasurface but also the operating costs brought by its reconfigurability, such as powering and cabling. These costs can present challenges, particularly in indoor dense spaces (IDSs). A self-sustainable metasurface (SSM), which retains reconfigurability unlike a static metasurface (SMS), achieves a lower operating cost than a reconfigurable intelligent surface (RIS) by being self-sustainable through power harvesting. In this paper, in order to find a better trade-off between metasurface gain, coverage, and operating cost, the design and performance of an SSM-assisted indoor mmWave communication system are investigated. We first simplify the design of the SSM-assisted system by considering the use of SSMs in a preset-based manner and the formation of coverage groups by associating SSMs with the closest user equipments (UEs). We propose a two-stage iterative algorithm to maximize the minimum data rate in the system by jointly deciding the association between the UEs and the SSMs, the phase-shifts of the SSMs, and allocating time resources for each UE. The non-convexities that exist in the proposed optimization problem are tackled using the feasible point pursuit successive convex approximation method and the concave-convex procedure. To understand the best scenario for using SSM, the resulting performance is compared with that achieved with RIS and SMS. Our numerical results indicate that SSMs are best utilized in a small environment where self-sustainability is easier to achieve when the budget for operating costs is tight.
Abstract:This paper introduces PatchRefiner, an advanced framework for metric single image depth estimation aimed at high-resolution real-domain inputs. While depth estimation is crucial for applications such as autonomous driving, 3D generative modeling, and 3D reconstruction, achieving accurate high-resolution depth in real-world scenarios is challenging due to the constraints of existing architectures and the scarcity of detailed real-world depth data. PatchRefiner adopts a tile-based methodology, reconceptualizing high-resolution depth estimation as a refinement process, which results in notable performance enhancements. Utilizing a pseudo-labeling strategy that leverages synthetic data, PatchRefiner incorporates a Detail and Scale Disentangling (DSD) loss to enhance detail capture while maintaining scale accuracy, thus facilitating the effective transfer of knowledge from synthetic to real-world data. Our extensive evaluations demonstrate PatchRefiner's superior performance, significantly outperforming existing benchmarks on the Unreal4KStereo dataset by 18.1% in terms of the root mean squared error (RMSE) and showing marked improvements in detail accuracy and consistent scale estimation on diverse real-world datasets like CityScape, ScanNet++, and ETH3D.
Abstract:Choreographers determine what the dances look like, while cameramen determine the final presentation of dances. Recently, various methods and datasets have showcased the feasibility of dance synthesis. However, camera movement synthesis with music and dance remains an unsolved challenging problem due to the scarcity of paired data. Thus, we present DCM, a new multi-modal 3D dataset, which for the first time combines camera movement with dance motion and music audio. This dataset encompasses 108 dance sequences (3.2 hours) of paired dance-camera-music data from the anime community, covering 4 music genres. With this dataset, we uncover that dance camera movement is multifaceted and human-centric, and possesses multiple influencing factors, making dance camera synthesis a more challenging task compared to camera or dance synthesis alone. To overcome these difficulties, we propose DanceCamera3D, a transformer-based diffusion model that incorporates a novel body attention loss and a condition separation strategy. For evaluation, we devise new metrics measuring camera movement quality, diversity, and dancer fidelity. Utilizing these metrics, we conduct extensive experiments on our DCM dataset, providing both quantitative and qualitative evidence showcasing the effectiveness of our DanceCamera3D model. Code and video demos are available at https://github.com/Carmenw1203/DanceCamera3D-Official.
Abstract:The task of financial analysis primarily encompasses two key areas: stock trend prediction and the corresponding financial question answering. Currently, machine learning and deep learning algorithms (ML&DL) have been widely applied for stock trend predictions, leading to significant progress. However, these methods fail to provide reasons for predictions, lacking interpretability and reasoning processes. Also, they can not integrate textual information such as financial news or reports. Meanwhile, large language models (LLMs) have remarkable textual understanding and generation ability. But due to the scarcity of financial training datasets and limited integration with real-time knowledge, LLMs still suffer from hallucinations and are unable to keep up with the latest information. To tackle these challenges, we first release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data. It has a positive impact on training LLMs for completing financial analysis. We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task, which integrates retrieval-augmented generation (RAG) techniques. Extensive experiments are conducted to demonstrate the effectiveness of our framework on financial analysis.
Abstract:In this report, we present our solution to the multi-task robustness track of the 1st Visual Continual Learning (VCL) Challenge at ICCV 2023 Workshop. We propose a vanilla framework named UniNet that seamlessly combines various visual perception algorithms into a multi-task model. Specifically, we choose DETR3D, Mask2Former, and BinsFormer for 3D object detection, instance segmentation, and depth estimation tasks, respectively. The final submission is a single model with InternImage-L backbone, and achieves a 49.6 overall score (29.5 Det mAP, 80.3 mTPS, 46.4 Seg mAP, and 7.93 silog) on SHIFT validation set. Besides, we provide some interesting observations in our experiments which may facilitate the development of multi-task learning in dense visual prediction.
Abstract:We introduce an approach for 3D head avatar generation and editing with multi-modal conditioning based on a 3D Generative Adversarial Network (GAN) and a Latent Diffusion Model (LDM). 3D GANs can generate high-quality head avatars given a single or no condition. However, it is challenging to generate samples that adhere to multiple conditions of different modalities. On the other hand, LDMs excel at learning complex conditional distributions. To this end, we propose to exploit the conditioning capabilities of LDMs to enable multi-modal control over the latent space of a pre-trained 3D GAN. Our method can generate and edit 3D head avatars given a mixture of control signals such as RGB input, segmentation masks, and global attributes. This provides better control over the generation and editing of synthetic avatars both globally and locally. Experiments show that our proposed approach outperforms a solely GAN-based approach both qualitatively and quantitatively on generation and editing tasks. To the best of our knowledge, our approach is the first to introduce multi-modal conditioning to 3D avatar generation and editing. \\href{avatarmmc-sig24.github.io}{Project Page}
Abstract:Long-context processing is a critical ability that constrains the applicability of large language models. Although there exist various methods devoted to enhancing the long-context processing ability of large language models (LLMs), they are developed in an isolated manner and lack systematic analysis and integration of their strengths, hindering further developments. In this paper, we introduce UniMem, a unified framework that reformulates existing long-context methods from the view of memory augmentation of LLMs. UniMem is characterized by four key dimensions: Memory Management, Memory Writing, Memory Reading, and Memory Injection, providing a systematic theory for understanding various long-context methods. We reformulate 16 existing methods based on UniMem and analyze four representative methods: Transformer-XL, Memorizing Transformer, RMT, and Longformer into equivalent UniMem forms to reveal their design principles and strengths. Based on these analyses, we propose UniMix, an innovative approach that integrates the strengths of these algorithms. Experimental results show that UniMix achieves superior performance in handling long contexts with significantly lower perplexity than baselines.
Abstract:In this paper, we investigate how metasurfaces can be deployed to deliver high data rates in a millimeter-wave (mmWave) indoor dense space with many blocking objects. These surfaces can either be static metasurfaces (SMSs) that reflect with fixed phase-shifts or reconfigurable intelligent surfaces (RISs) that can reconfigure their phase-shifts to the currently served user. The latter comes with an increased power, cabling, and signaling cost. To see how reconfigurability affects the network performance, we propose an iterative algorithm based on the feasible point pursuit successive convex approximation method. We jointly optimize the types and phase-shifts of the surfaces and the time portion allocated to each user equipment to maximize the minimum data rate achieved by the network. Our numerical results demonstrate that the minimum data rate improves as more RISs are introduced but the gain diminishes after some point. Therefore, introducing more reconfigurability is not always necessary. Another result shows that to reach the same data rate achieved by using 22 SMSs, at least 18 RISs are needed. This suggests that when it is costly to deploy many RISs, as an inexpensive alternative solution, one can reach the same data rate just by densely deploying more SMSs.