Abstract:Accurate estimation of the cascaded channel from a user equipment (UE) to a base station (BS) via each reconfigurable intelligent surface (RIS) element is critical to realizing the full potential of the RIS's ability to control the overall channel. The number of parameters to be estimated is equal to the number of RIS elements, requiring an equal number of pilots unless an underlying structure can be identified. In this paper, we show how the spatial correlation inherent in the different RIS channels provides this desired structure. We first optimize the RIS phase-shift pattern using a much-reduced pilot length (determined by the rank of the spatial correlation matrices) to minimize the mean square error (MSE) in the channel estimation under electromagnetic interference. In addition to considering the linear minimum MSE (LMMSE) channel estimator, we propose a novel channel estimator that requires only knowledge of the array geometry while not requiring any user-specific statistical information. We call this the reduced-subspace least squares (RS-LS) estimator and optimize the RIS phase-shift pattern for it. This novel estimator significantly outperforms the conventional LS estimator. For both the LMMSE and RS-LS estimators, the proposed optimized RIS configurations result in significant channel estimation improvements over the benchmarks.
Abstract:Integrated sensing and communications (ISAC) allows networks to perform sensing alongside data transmission. While most ISAC studies focus on single-target, multi-user scenarios, multi-target sensing is scarcely researched. This letter examines the monostatic sensing performance of a multi-target massive MIMO system, aiming to minimize the sum of Cram\'er-Rao lower bounds (CRLBs) for target direction-of-arrival estimates while meeting user equipment (UE) rate requirements. We propose several precoding schemes, comparing sensing performance and complexity, and find that sensing-focused precoding with power allocation for communication achieves near-optimal performance with 20 times less complexity than joint precoding. Additionally, time-sharing between communication and sensing outperforms simple time division, highlighting the benefits of resource-sharing for ISAC.
Abstract:The reconfigurable intelligent surface (RIS) technology emerges as a highly useful component of the rapidly evolving integrated sensing and communications paradigm, primarily owing to its remarkable signal-to-noise ratio enhancement capabilities. In this paper, our focus is on mono-static target detection while considering the communication requirement of a user equipment. Both sensing and communication benefit from the presence of an RIS, which makes the channels richer and stronger. Diverging from prior research, we comprehensively examine three target echo paths: the direct (static) channel path, the path via the RIS, and a combination of these, each characterized by distinct radar cross sections (RCSs). We take both the line-of-sight (LOS) and the non-line-of-sight (NLOS) paths into account under a clutter for which the distribution is not known, but the low-rank subspace it resides. We derive the generalized likelihood ratio test (GLRT) detector and introduce a novel approach for jointly optimizing the configuration of RIS phase-shifts and precoding. Our simulation results underscore the paramount importance of this combined design in terms of enhancing detection probability. Moreover, it becomes evident that the derived clutter-aware target detection significantly enhances detection performance, especially when the clutter is strong.
Abstract:A large-scale MIMO (multiple-input multiple-output) system offers significant advantages in wireless communication, including potential spatial multiplexing and beamforming capabilities. However, channel estimation becomes challenging with multiple antennas at both the transmitter and receiver ends. The minimum mean-squared error (MMSE) estimator, for instance, requires a spatial correlation matrix whose dimensions scale with the square of the product of the number of antennas on the transmitter and receiver sides. This scaling presents a substantial challenge, particularly as antenna counts increase in line with current technological trends. Traditional MIMO literature offers alternative channel estimators that mitigate the need to fully acquire the spatial correlation matrix. In this paper, we revisit point-to-point MIMO channel estimation and introduce a reduced-subspace least squares (RS-LS) channel estimator designed to eliminate physically impossible channel dimensions inherent in uniform planar arrays. Additionally, we propose a cluster-aware RS-LS estimator that leverages both reduced and cluster-specific subspace properties, significantly enhancing performance over the conventional RS-LS approach. Notably, both proposed methods obviate the need for fully/partial knowledge of the spatial correlation matrix.
Abstract:Cell-free massive MIMO (multiple-input multiple-output) is a promising network architecture for beyond 5G systems, which can particularly offer more uniform data rates across the coverage area. Recent works have shown how reconfigurable intelligent surfaces (RISs) can be used as relays in cell-free massive MIMO networks to improve data rates further. In this paper, we analyze an alternative architecture where an RIS is integrated into the antenna array at each access point and acts as an intelligent transmitting surface to expand the aperture area. This approach alleviates the multiplicative fading effect that normally makes RIS-aided systems inefficient and offers a cost-effective alternative to building large antenna arrays. We use a small number of antennas and a larger number of controllable RIS elements to match the performance of an antenna array whose size matches that of the RIS. In this paper, we explore this innovative transceiver architecture in the uplink of a cell-free massive MIMO system for the first time, demonstrating its potential benefits through analytic and numerical contributions. The simulation results validate the effectiveness of our proposed phase-shift configuration and highlight scenarios where the proposed architecture significantly enhances data rates.
Abstract:After nearly a century of specialized applications in optics, remote sensing, and acoustics, the near-field (NF) electromagnetic propagation zone is experiencing a resurgence in research interest. This renewed attention is fueled by the emergence of promising applications in various fields such as wireless communications, holography, medical imaging, and quantum-inspired systems. Signal processing within NF sensing and wireless communications environments entails addressing issues related to extended scatterers, range-dependent beampatterns, spherical wavefronts, mutual coupling effects, and the presence of both reactive and radiative fields. Recent investigations have focused on these aspects in the context of extremely large arrays and wide bandwidths, giving rise to novel challenges in channel estimation, beamforming, beam training, sensing, and localization. While NF optics has a longstanding history, advancements in NF phase retrieval techniques and their applications have lately garnered significant research attention. Similarly, utilizing NF localization with acoustic arrays represents a contemporary extension of established principles in NF acoustic array signal processing. This article aims to provide an overview of state-of-the-art signal processing techniques within the NF domain, offering a comprehensive perspective on recent advances in diverse applications.
Abstract:In the design of a metasurface-assisted system for indoor environments, it is essential to take into account not only the performance gains and coverage extension provided by the metasurface but also the operating costs brought by its reconfigurability, such as powering and cabling. These costs can present challenges, particularly in indoor dense spaces (IDSs). A self-sustainable metasurface (SSM), which retains reconfigurability unlike a static metasurface (SMS), achieves a lower operating cost than a reconfigurable intelligent surface (RIS) by being self-sustainable through power harvesting. In this paper, in order to find a better trade-off between metasurface gain, coverage, and operating cost, the design and performance of an SSM-assisted indoor mmWave communication system are investigated. We first simplify the design of the SSM-assisted system by considering the use of SSMs in a preset-based manner and the formation of coverage groups by associating SSMs with the closest user equipments (UEs). We propose a two-stage iterative algorithm to maximize the minimum data rate in the system by jointly deciding the association between the UEs and the SSMs, the phase-shifts of the SSMs, and allocating time resources for each UE. The non-convexities that exist in the proposed optimization problem are tackled using the feasible point pursuit successive convex approximation method and the concave-convex procedure. To understand the best scenario for using SSM, the resulting performance is compared with that achieved with RIS and SMS. Our numerical results indicate that SSMs are best utilized in a small environment where self-sustainability is easier to achieve when the budget for operating costs is tight.
Abstract:As wireless technology begins to utilize physically larger arrays and/or higher frequencies, the transmitter and receiver will reside in each other's radiative near field. This fact gives rise to unusual propagation phenomena such as spherical wavefronts and beamfocusing, creating the impression that new spatial dimensions -- called degrees-of-freedom (DoF) -- can be exploited in the near field. However, this is a fallacy because the theoretically maximum DoF are already achievable in the far field. This paper sheds light on these issues by providing a tutorial on spatial frequencies, which are the fundamental components of wireless channels, and by explaining their role in characterizing the DoF in the near and far fields. In particular, we demonstrate how a single propagation path utilizes one spatial frequency in the far field and an interval of spatial frequencies in the near field. We explain how the array geometry determines the number of distinguishable spatial frequency bins and, thereby, the spatial DoF. We also describe how to model near-field multipath channels and their spatial correlation matrices. Finally, we discuss the research challenges and future directions in this field.
Abstract:Extremely large aperture arrays (ELAAs) can offer massive spatial multiplexing gains in the radiative near-field region in beyond 5G systems. While near-field channel modeling for uniform linear arrays has been extensively explored in the literature, uniform planar arrays-despite their advantageous form factor-have been somewhat neglected due to their more complex nature. Spatial correlation is crucial for non-line-of-sight channel modeling. Unlike far-field scenarios, the spatial correlation properties of near-field channels have not been thoroughly investigated. In this paper, we start from the fundamentals and develop a near-field spatial correlation model for arbitrary spatial scattering functions. Furthermore, we derive the lower dimensional subspace where the channel vectors can exist. It is based on prior knowledge of the three-dimensional coverage region where scattering clusters exists and we derive a tractable one-dimensional integral expression. This subspace is subsequently employed in a reduced-subspace least squares (RS-LS) estimation method for near-field channels, thereby enhancing performance over the traditional least squares estimator without the need for having full spatial correlation matrix knowledge.
Abstract:The physical layer foundations of cell-free massive MIMO (CF-mMIMO) have been well-established. As a next step, researchers are investigating practical and energy-efficient network implementations. This paper focuses on multiple sets of access points (APs) where user equipments (UEs) are served in each set, termed a federation, without inter-federation interference. The combination of federations and CF-mMIMO shows promise for highly-loaded scenarios. Our aim is to minimize the total energy consumption while adhering to UE downlink data rate constraints. The energy expenditure of the full system is modelled using a detailed hardware model of the APs. We jointly design the AP-UE association variables, determine active APs, and assign APs and UEs to federations. To solve this highly combinatorial problem, we develop a novel alternating optimization algorithm. Simulation results for an indoor factory demonstrate the advantages of considering multiple federations, particularly when facing large data rate requirements. Furthermore, we show that adopting a more distributed CF-mMIMO architecture is necessary to meet the data rate requirements. Conversely, if feasible, using a less distributed system with more antennas at each AP is more advantageous from an energy savings perspective.