Abstract:Power allocation remains a fundamental challenge in wireless communication networks, particularly under dynamic user loads and large-scale deployments. While Transformerbased models have demonstrated strong performance, their computational cost scales poorly with the number of users. In this work, we propose a novel hybrid Tree-Transformer architecture that achieves scalable per-user power allocation. Our model compresses user features via a binary tree into a global root representation, applies a Transformer encoder solely to this root, and decodes per-user uplink and downlink powers through a shared decoder. This design achieves logarithmic depth and linear total complexity, enabling efficient inference across large and variable user sets without retraining or architectural changes. We evaluate our model on the max-min fairness problem in cellfree massive MIMO systems and demonstrate that it achieves near-optimal performance while significantly reducing inference time compared to full-attention baselines.
Abstract:Optimal AP clustering and power allocation are critical in user-centric cell-free massive MIMO systems. Existing deep learning models lack flexibility to handle dynamic network configurations. Furthermore, many approaches overlook pilot contamination and suffer from high computational complexity. In this paper, we propose a lightweight transformer model that overcomes these limitations by jointly predicting AP clusters and powers solely from spatial coordinates of user devices and AP. Our model is architecture-agnostic to users load, handles both clustering and power allocation without channel estimation overhead, and eliminates pilot contamination by assigning users to AP within a pilot reuse constraint. We also incorporate a customized linear attention mechanism to capture user-AP interactions efficiently and enable linear scalability with respect to the number of users. Numerical results confirm the model's effectiveness in maximizing the minimum spectral efficiency and providing near-optimal performance while ensuring adaptability and scalability in dynamic scenarios.
Abstract:This paper investigates the impact of mutual coupling on MIMO systems with densely deployed antennas. Leveraging multiport communication theory, we analyze both coherent and noncoherent detection approaches in a single-user uplink scenario where the receiver ignores mutual coupling effects. Simulation results indicate that while coherent detection is generally more accurate, it is highly sensitive to mismatches in the coupling model, leading to severe performance degradation when antennas are closely spaced, to the point of becoming unusable. Noncoherent detection, on the other hand, exhibits a higher error probability but is more robust to coupling model mismatches.




Abstract:Accurate channel estimation is essential for reliable communication in sub-THz extremely large (XL) MIMO systems. Deploying XL-MIMO in high-frequency bands not only increases the number of antennas, but also fundamentally alters channel propagation characteristics, placing the user equipments (UE) in the radiative near-field of the base station. This paper proposes a parametric estimation method using the multiple signal classification (MUSIC) algorithm to extract UE location data from uplink pilot signals. These parameters are used to reconstruct the spatial correlation matrix, followed by an approximation of the minimum mean square error (MMSE) channel estimator. Numerical results show that the proposed method outperforms the least-squares (LS) estimator in terms of the normalized mean-square error (NMSE), even without prior UE location knowledge.




Abstract:Power allocation is an important task in wireless communication networks. Classical optimization algorithms and deep learning methods, while effective in small and static scenarios, become either computationally demanding or unsuitable for large and dynamic networks with varying user loads. This letter explores the potential of transformer-based deep learning models to address these challenges. We propose a transformer neural network to jointly predict optimal uplink and downlink power using only user and access point positions. The max-min fairness problem in cell-free massive multiple input multiple output systems is considered. Numerical results show that the trained model provides near-optimal performance and adapts to varying numbers of users and access points without retraining, additional processing, or updating its neural network architecture. This demonstrates the effectiveness of the proposed model in achieving robust and flexible power allocation for dynamic networks.




Abstract:Noncoherent communication systems have regained interest due to the growing demand for high-mobility and low-latency applications. Most existing studies using large antenna arrays rely on the far-field approximation, which assumes locally plane wavefronts. This assumption becomes inaccurate at higher frequencies and shorter ranges, where wavefront curvature plays a significant role and antenna arrays may operate in the radiative near field. In this letter, we adopt a model for the channel spatial correlation matrix that remains valid in both near and far field scenarios. Using this model, we demonstrate that noncoherent systems can leverage the benefits of wavefront spherical curvature, even beyond the Fraunhofer distance, revealing that the classical far-field approximation may significantly underestimate system performance. Moreover, we show that large antenna arrays enable the multiplexing of various users and facilitate near-optimal noncoherent detection with low computational complexity.




Abstract:Accurate estimation of the cascaded channel from a user equipment (UE) to a base station (BS) via each reconfigurable intelligent surface (RIS) element is critical to realizing the full potential of the RIS's ability to control the overall channel. The number of parameters to be estimated is equal to the number of RIS elements, requiring an equal number of pilots unless an underlying structure can be identified. In this paper, we show how the spatial correlation inherent in the different RIS channels provides this desired structure. We first optimize the RIS phase-shift pattern using a much-reduced pilot length (determined by the rank of the spatial correlation matrices) to minimize the mean square error (MSE) in the channel estimation under electromagnetic interference. In addition to considering the linear minimum MSE (LMMSE) channel estimator, we propose a novel channel estimator that requires only knowledge of the array geometry while not requiring any user-specific statistical information. We call this the reduced-subspace least squares (RS-LS) estimator and optimize the RIS phase-shift pattern for it. This novel estimator significantly outperforms the conventional LS estimator. For both the LMMSE and RS-LS estimators, the proposed optimized RIS configurations result in significant channel estimation improvements over the benchmarks.




Abstract:Cell-free massive multiple-input multiple-output (mMIMO) networks enhance coverage and spectral efficiency (SE) by distributing antennas across access points (APs) with phase coherence between APs. However, the use of cost-efficient local oscillators (LOs) introduces phase noise (PN) that compromises phase coherence, even with centralized processing. Sharing an LO across APs can reduce costs in specific configurations but cause correlated PN between APs, leading to correlated interference that affects centralized combining. This can be improved by exploiting the PN correlation in channel estimation. This paper presents an uplink orthogonal frequency division multiplexing (OFDM) signal model for PN-impaired cell-free mMIMO, addressing gaps in single-carrier signal models. We evaluate mismatches from applying single-carrier methods to OFDM systems, showing how they underestimate the impact of PN and produce over-optimistic achievable SE predictions. Based on our OFDM signal model, we propose two PN-aware channel and common phase error estimators: a distributed estimator for uncorrelated PN with separate LOs and a centralized estimator with shared LOs. We introduce a deep learning-based channel estimator to enhance the performance and reduce the number of iterations of the centralized estimator. The simulation results show that the distributed estimator outperforms mismatched estimators with separate LOs, whereas the centralized estimator enhances distributed estimators with shared LOs.




Abstract:This paper investigates how semantic communication can effectively influence and potentially redefine the limitations imposed by physical layer settings. Reconfigurable Intelligent Surfaces (RIS) enable the intelligent configuration of the physical layer of communication systems. However, its practical implementation is hampered by several limitations. The Semantic Communication (SemCom) paradigm introduces additional degrees of freedom that can be exploited to improve the robustness of communication against physical layer impairments. In essence, SemCom ensures that the data representation remains robust even under adverse physical conditions by emphasizing the transmission of meaningful information in a manner that is less susceptible to degradation. Through the use of SemCom, potential RIS gains are demonstrated in terms of RIS area size and the phase shift precision of its active elements.




Abstract:Large-scale MIMO systems with a massive number N of individually controlled antennas pose significant challenges for minimum mean square error (MMSE) channel estimation, based on uplink pilots. The major ones arise from the computational complexity, which scales with $N^3$, and from the need for accurate knowledge of the channel statistics. This paper aims to address both challenges by introducing reduced-complexity channel estimation methods that achieve the performance of MMSE in terms of estimation accuracy and uplink spectral efficiency while demonstrating improved robustness in practical scenarios where channel statistics must be estimated. This is achieved by exploiting the inherent structure of the spatial correlation matrix induced by the array geometry. Specifically, we use a Kronecker decomposition for uniform planar arrays and a well-suited circulant approximation for uniform linear arrays. By doing so, a significantly lower computational complexity is achieved, scaling as $N\sqrt{N}$ and $N\log N$ for squared planar arrays and linear arrays, respectively.