Abstract:In multi-user semantic communication, language mismatche poses a significant challenge when independently trained agents interact. We present a novel semantic equalization algorithm that enables communication between agents with different languages without additional retraining. Our algorithm is based on relative representations, a framework that enables different agents employing different neural network models to have unified representation. It proceeds by projecting the latent vectors of different models into a common space defined relative to a set of data samples called \textit{anchors}, whose number equals the dimension of the resulting space. A communication between different agents translates to a communication of semantic symbols sampled from this relative space. This approach, in addition to aligning the semantic representations of different agents, allows compressing the amount of information being exchanged, by appropriately selecting the number of anchors. Eventually, we introduce a novel anchor selection strategy, which advantageously determines prototypical anchors, capturing the most relevant information for the downstream task. Our numerical results show the effectiveness of the proposed approach allowing seamless communication between agents with radically different models, including differences in terms of neural network architecture and datasets used for initial training.
Abstract:This paper investigates how semantic communication can effectively influence and potentially redefine the limitations imposed by physical layer settings. Reconfigurable Intelligent Surfaces (RIS) enable the intelligent configuration of the physical layer of communication systems. However, its practical implementation is hampered by several limitations. The Semantic Communication (SemCom) paradigm introduces additional degrees of freedom that can be exploited to improve the robustness of communication against physical layer impairments. In essence, SemCom ensures that the data representation remains robust even under adverse physical conditions by emphasizing the transmission of meaningful information in a manner that is less susceptible to degradation. Through the use of SemCom, potential RIS gains are demonstrated in terms of RIS area size and the phase shift precision of its active elements.
Abstract:This paper investigates the advantages of representing and processing semantic knowledge extracted into graphs within the emerging paradigm of semantic communications. The proposed approach leverages semantic and pragmatic aspects, incorporating recent advances on large language models (LLMs) to achieve compact representations of knowledge to be processed and exchanged between intelligent agents. This is accomplished by using the cascade of LLMs and graph neural networks (GNNs) as semantic encoders, where information to be shared is selected to be meaningful at the receiver. The embedding vectors produced by the proposed semantic encoder represent information in the form of triplets: nodes (semantic concepts entities), edges(relations between concepts), nodes. Thus, semantic information is associated with the representation of relationships among elements in the space of semantic concept abstractions. In this paper, we investigate the potential of achieving high compression rates in communication by incorporating relations that link elements within graph embeddings. We propose sending semantic symbols solely equivalent to node embeddings through the wireless channel and inferring the complete knowledge graph at the receiver. Numerical simulations illustrate the effectiveness of leveraging knowledge graphs to semantically compress and transmit information.
Abstract:Semantic channel equalization has emerged as a solution to address language mismatch in multi-user semantic communications. This approach aims to align the latent spaces of an encoder and a decoder which were not jointly trained and it relies on a partition of the semantic (latent) space into atoms based on the the semantic meaning. In this work we explore the role of the semantic space partition in scenarios where the task structure involves a one-to-many mapping between the semantic space and the action space. In such scenarios, partitioning based on hard inference results results in loss of information which degrades the equalization performance. We propose a soft criterion to derive the atoms of the partition which leverages the soft decoder's output and offers a more comprehensive understanding of the semantic space's structure. Through empirical validation, we demonstrate that soft partitioning yields a more descriptive and regular partition of the space, consequently enhancing the performance of the equalization algorithm.
Abstract:We relax the constraint of a shared language between agents in a semantic and goal-oriented communication system to explore the effect of language mismatch in distributed task solving. We propose a mathematical framework, which provides a modelling and a measure of the semantic distortion introduced in the communication when agents use distinct languages. We then propose a new approach to semantic channel equalization with proven effectiveness through numerical evaluations.
Abstract:In future 6G wireless networks, semantic and effectiveness aspects of communications will play a fundamental role, incorporating meaning and relevance into transmissions. However, obstacles arise when devices employ diverse languages, logic, or internal representations, leading to semantic mismatches that might jeopardize understanding. In latent space communication, this challenge manifests as misalignment within high-dimensional representations where deep neural networks encode data. This paper presents a novel framework for goal-oriented semantic communication, leveraging relative representations to mitigate semantic mismatches via latent space alignment. We propose a dynamic optimization strategy that adapts relative representations, communication parameters, and computation resources for energy-efficient, low-latency, goal-oriented semantic communications. Numerical results demonstrate our methodology's effectiveness in mitigating mismatches among devices, while optimizing energy consumption, delay, and effectiveness.
Abstract:This paper introduces the concept of Distributed Intelligent integrated Sensing and Communications (DISAC), which expands the capabilities of Integrated Sensing and Communications (ISAC) towards distributed architectures. Additionally, the DISAC framework integrates novel waveform design with new semantic and goal-oriented communication paradigms, enabling ISAC technologies to transition from traditional data fusion to the semantic composition of diverse sensed and shared information. This progress facilitates large-scale, energy-efficient support for high-precision spatial-temporal processing, optimizing ISAC resource utilization, and enabling effective multi-modal sensing performance. Addressing key challenges such as efficient data management and connect-compute resource utilization, 6G- DISAC stands to revolutionize applications in diverse sectors including transportation, healthcare, and industrial automation. Our study encapsulates the project vision, methodologies, and potential impact, marking a significant stride towards a more connected and intelligent world.
Abstract:This paper introduces the distributed and intelligent integrated sensing and communications (DISAC) concept, a transformative approach for 6G wireless networks that extends the emerging concept of integrated sensing and communications (ISAC). DISAC addresses the limitations of the existing ISAC models and, to overcome them, it introduces two novel foundational functionalities for both sensing and communications: a distributed architecture and a semantic and goal-oriented framework. The distributed architecture enables large-scale and energy-efficient tracking of connected users and objects, leveraging the fusion of heterogeneous sensors. The semantic and goal-oriented intelligent and parsimonious framework, enables the transition from classical data fusion to the composition of semantically selected information, offering new paradigms for the optimization of resource utilization and exceptional multi-modal sensing performance across various use cases. This paper details DISAC's principles, architecture, and potential applications.
Abstract:Recent advances in AI technologies have notably expanded device intelligence, fostering federation and cooperation among distributed AI agents. These advancements impose new requirements on future 6G mobile network architectures. To meet these demands, it is essential to transcend classical boundaries and integrate communication, computation, control, and intelligence. This paper presents the 6G-GOALS approach to goal-oriented and semantic communications for AI-Native 6G Networks. The proposed approach incorporates semantic, pragmatic, and goal-oriented communication into AI-native technologies, aiming to facilitate information exchange between intelligent agents in a more relevant, effective, and timely manner, thereby optimizing bandwidth, latency, energy, and electromagnetic field (EMF) radiation. The focus is on distilling data to its most relevant form and terse representation, aligning with the source's intent or the destination's objectives and context, or serving a specific goal. 6G-GOALS builds on three fundamental pillars: i) AI-enhanced semantic data representation, sensing, compression, and communication, ii) foundational AI reasoning and causal semantic data representation, contextual relevance, and value for goal-oriented effectiveness, and iii) sustainability enabled by more efficient wireless services. Finally, we illustrate two proof-of-concepts implementing semantic, goal-oriented, and pragmatic communication principles in near-future use cases. Our study covers the project's vision, methodologies, and potential impact.
Abstract:Deep Neural Network (DNN) splitting is one of the key enablers of edge Artificial Intelligence (AI), as it allows end users to pre-process data and offload part of the computational burden to nearby Edge Cloud Servers (ECSs). This opens new opportunities and degrees of freedom in balancing energy consumption, delay, accuracy, privacy, and other trustworthiness metrics. In this work, we explore the opportunity of DNN splitting at the edge of 6G wireless networks to enable low energy cooperative inference with target delay and accuracy with a goal-oriented perspective. Going beyond the current literature, we explore new trade-offs that take into account the accuracy degradation as a function of the Splitting Point (SP) selection and wireless channel conditions. Then, we propose an algorithm that dynamically controls SP selection, local computing resources, uplink transmit power and bandwidth allocation, in a goal-oriented fashion, to meet a target goal-effectiveness. To the best of our knowledge, this is the first work proposing adaptive SP selection on the basis of all learning performance (i.e., energy, delay, accuracy), with the aim of guaranteeing the accomplishment of a goal (e.g., minimize the energy consumption under latency and accuracy constraints). Numerical results show the advantages of the proposed SP selection and resource allocation, to enable energy frugal and effective edge AI.