Abstract:This paper investigates how semantic communication can effectively influence and potentially redefine the limitations imposed by physical layer settings. Reconfigurable Intelligent Surfaces (RIS) enable the intelligent configuration of the physical layer of communication systems. However, its practical implementation is hampered by several limitations. The Semantic Communication (SemCom) paradigm introduces additional degrees of freedom that can be exploited to improve the robustness of communication against physical layer impairments. In essence, SemCom ensures that the data representation remains robust even under adverse physical conditions by emphasizing the transmission of meaningful information in a manner that is less susceptible to degradation. Through the use of SemCom, potential RIS gains are demonstrated in terms of RIS area size and the phase shift precision of its active elements.
Abstract:Recent advances in AI technologies have notably expanded device intelligence, fostering federation and cooperation among distributed AI agents. These advancements impose new requirements on future 6G mobile network architectures. To meet these demands, it is essential to transcend classical boundaries and integrate communication, computation, control, and intelligence. This paper presents the 6G-GOALS approach to goal-oriented and semantic communications for AI-Native 6G Networks. The proposed approach incorporates semantic, pragmatic, and goal-oriented communication into AI-native technologies, aiming to facilitate information exchange between intelligent agents in a more relevant, effective, and timely manner, thereby optimizing bandwidth, latency, energy, and electromagnetic field (EMF) radiation. The focus is on distilling data to its most relevant form and terse representation, aligning with the source's intent or the destination's objectives and context, or serving a specific goal. 6G-GOALS builds on three fundamental pillars: i) AI-enhanced semantic data representation, sensing, compression, and communication, ii) foundational AI reasoning and causal semantic data representation, contextual relevance, and value for goal-oriented effectiveness, and iii) sustainability enabled by more efficient wireless services. Finally, we illustrate two proof-of-concepts implementing semantic, goal-oriented, and pragmatic communication principles in near-future use cases. Our study covers the project's vision, methodologies, and potential impact.
Abstract:This work lies at the intersection of two cutting edge technologies envisioned to proliferate in future 6G wireless systems: Multi-access Edge Computing (MEC) and Reconfigurable Intelligent Surfaces (RISs). While the former will bring a powerful information technology environment at the wireless edge, the latter will enhance communication performance, thanks to the possibility of adapting wireless propagation as per end users' convenience, according to specific service requirements. We propose a joint optimization of radio, computing, and wireless environment reconfiguration through an RIS, with the goal of enabling low power computation offloading services with reliability guarantees. Going beyond previous works on this topic, multi-carrier frequency selective RIS elements' responses and wireless channels are considered. This opens new challenges in RIS optimization, accounting for frequency dependent RIS response profiles, which strongly affect RIS-aided wireless links and, as a consequence, MEC service performance. We formulate an optimization problem accounting for short and long-term constraints involving device transmit power allocation across multiple subcarriers and local computing resources, as well as RIS reconfiguration parameters according to a recently developed Lorentzian model. Besides a theoretical optimization framework, numerical results show the effectiveness of the proposed method in enabling low power reliable computation offloading over RIS-aided frequency selective channels.
Abstract:Deep Neural Network (DNN) splitting is one of the key enablers of edge Artificial Intelligence (AI), as it allows end users to pre-process data and offload part of the computational burden to nearby Edge Cloud Servers (ECSs). This opens new opportunities and degrees of freedom in balancing energy consumption, delay, accuracy, privacy, and other trustworthiness metrics. In this work, we explore the opportunity of DNN splitting at the edge of 6G wireless networks to enable low energy cooperative inference with target delay and accuracy with a goal-oriented perspective. Going beyond the current literature, we explore new trade-offs that take into account the accuracy degradation as a function of the Splitting Point (SP) selection and wireless channel conditions. Then, we propose an algorithm that dynamically controls SP selection, local computing resources, uplink transmit power and bandwidth allocation, in a goal-oriented fashion, to meet a target goal-effectiveness. To the best of our knowledge, this is the first work proposing adaptive SP selection on the basis of all learning performance (i.e., energy, delay, accuracy), with the aim of guaranteeing the accomplishment of a goal (e.g., minimize the energy consumption under latency and accuracy constraints). Numerical results show the advantages of the proposed SP selection and resource allocation, to enable energy frugal and effective edge AI.
Abstract:Internet of Things (IoT) applications combine sensing, wireless communication, intelligence, and actuation, enabling the interaction among heterogeneous devices that collect and process considerable amounts of data. However, the effectiveness of IoT applications needs to face the limitation of available resources, including spectrum, energy, computing, learning and inference capabilities. This paper challenges the prevailing approach to IoT communication, which prioritizes the usage of resources in order to guarantee perfect recovery, at the bit level, of the data transmitted by the sensors to the central unit. We propose a novel approach, called goal-oriented (GO) IoT system design, that transcends traditional bit-related metrics and focuses directly on the fulfillment of the goal motivating the exchange of data. The improvement is then achieved through a comprehensive system optimization, integrating sensing, communication, computation, learning, and control. We provide numerical results demonstrating the practical applications of our methodology in compelling use cases such as edge inference, cooperative sensing, and federated learning. These examples highlight the effectiveness and real-world implications of our proposed approach, with the potential to revolutionize IoT systems.
Abstract:6G will connect heterogeneous intelligent agents to make them operate complex cooperative tasks. When connecting intelligence, two main research questions arise to identify how AI and ML models behave depending on: i) their input data quality, affected by errors induced by interference and additive noise during wireless communication; ii) their contextual effectiveness and resilience to interpret and exploit the meaning behind the data. Both questions are within the realm of semantic and goal-oriented communications. With this paper we investigate how to effectively share spectrum resources between a legacy communication system and a new goal-oriented edge intelligence one. Specifically, we address the scenario of an eMBB service, i.e., a user uploading a video stream, interfering with an edge inference system, in which a user uploads images to a Mobile Edge Host that runs a classification task. Our objective is to achieve, through cooperation, the highest eMBB service data rate, subject to a targeted goal-effectiveness of the edge inference service, namely the probability of confident inference on time. We first formalize a general definition of a goal in the context of wireless communications. This includes the goal-effectiveness, as well as that of goal cost . We argue and show, through numerical evaluations, that communication reliability and goal-effectiveness are not straightforwardly linked. Then, after a performance evaluation aiming to clarify the difference between communication performance and goal-effectiveness, a long-term optimization problem is formulated and solved via Lyapunov optimization tools, to guarantee the desired performance. Finally, our numerical results assess the advantages of the proposed optimization, and the superiority of the goal-oriented strategy against baseline 5G compliant legacy approaches, under both stationary and non-stationary environments.
Abstract:In this paper, we propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge, in the context of 6G networks endowed with reconfigurable intelligent surfaces (RISs). We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system. Building on the marriage between Lyapunov stochastic optimization and deep reinforcement learning (DRL), we devise a dynamic learning algorithm that jointly optimizes the data compression scheme, the allocation of radio resources (i.e., power, transmission precoding), the computation resources (i.e., CPU cycles), and the RIS reflectivity parameters (i.e., phase shifts), with the aim of performing energy-efficient edge classification with end-to-end (E2E) delay and inference accuracy constraints. The proposed strategy enables dynamic control of the system and of the wireless propagation environment, performing a low-complexity optimization on a per-slot basis while dealing with time-varying radio channels and task arrivals, whose statistics are unknown. Numerical results assess the performance of the proposed RIS-empowered edge inference strategy in terms of trade-off between energy, delay, and accuracy of a classification task.
Abstract:We present a dynamic resource allocation strategy for energy-efficient and Electromagnetic Field (EMF) exposure aware computation offloading at the wireless network edge. The goal is to maximize the overall system sum-rate of offloaded data, under stability (i.e. finite end-to-end delay), EMF exposure and system power constraints. The latter comprises end devices for uplink transmission and a Mobile Edge Host (MEH) for computation. Our proposed method, based on Lyapunov stochastic optimization, is able to achieve this goal with theoretical guarantees on asymptotic optimality, without any prior knowledge of wireless channel statistics. Although a complex long-term optimization problem is formulated, a per-slot optimization based on instantaneous realizations is derived. Moreover, the solution of the instantaneous problem is provided with closed form expressions and fast iterative procedures. Besides the theoretical analysis, numerical results assess the performance of the proposed strategy in striking the best trade-off between offloading sum-rate, power consumption, EMF exposure, and E2E delay. To the best of our knowledge, this is the first work addressing the problem of energy and exposure aware computation offloading.
Abstract:Learning at the edge is a challenging task from several perspectives, since data must be collected by end devices (e.g. sensors), possibly pre-processed (e.g. data compression), and finally processed remotely to output the result of training and/or inference phases. This involves heterogeneous resources, such as radio, computing and learning related parameters. In this context, we propose an algorithm that dynamically selects data encoding scheme, local computing resources, uplink radio parameters, and remote computing resources, to perform a classification task with the minimum average end devices' energy consumption, under E2E delay and inference reliability constraints. Our method does not assume any prior knowledge of the statistics of time varying context parameters, while it only requires the solution of low complexity per-slot deterministic optimization problems, based on instantaneous observations of these parameters and that of properly defined state variables. Numerical results on convolutional neural network based image classification illustrate the effectiveness of our method in striking the best trade-off between energy, delay and inference reliability.
Abstract:Currently, the world experiences an unprecedentedly increasing generation of application data, from sensor measurements to video streams, thanks to the extreme connectivity capability provided by 5G networks. Going beyond 5G technology, such data aim to be ingested by Artificial Intelligence (AI) functions instantiated in the network to facilitate informed decisions, essential for the operation of applications, such as automated driving and factory automation. Nonetheless, while computing platforms hosting Machine Learning (ML) models are ever powerful, their energy footprint is a key impeding factor towards realizing a wireless network as a sustainable intelligent platform. Focusing on a beyond 5G wireless network, overlaid by a Multi-access Edge Computing (MEC) infrastructure with inferencing capabilities, our paper tackles the problem of energy-aware dependable inference by considering inference effectiveness as value of a goal that needs to be accomplished by paying the minimum price in energy consumption. Both MEC-assisted standalone and ensemble inference options are evaluated. It is shown that, for some system scenarios, goal effectiveness above 84% is achieved and sustained even by relaxing communication reliability requirements by one decimal digit, while enjoying a device radio energy consumption reduction of almost 23% at the same time. Also, ensemble inference is shown to improve system-wide energy efficiency and even achieve higher goal effectiveness, as compared to the standalone case for some system parameterizations.