Department of Electronic Systems, Aalborg University, Denmark
Abstract:Reconfigurable intelligent surfaces (RISs) are potential enablers of future wireless communications and sensing applications and use-cases. The RIS is envisioned as a dynamically controllable surface that is capable of transforming impinging electromagnetic waves in terms of angles and polarization. Many models has been proposed to predict the wave-transformation capabilities of potential RISs, where power conservation is ensured by enforcing that the scattered power equals the power impinging upon the aperture of the RIS, without considering whether the scattered field adds coherently of destructively with the source field. In effect, this means that power is not conserved, as elaborated in this paper. With the goal of investigating the implications of global and local power conservation in RISs, work considers a single-layer metasurface based RIS. A complete end-to-end communications channel is given through polarizability modeling and conditions for power conservation and channel reciprocity are derived. The implications of the power conservation conditions upon the end-to-end communications channel is analyzed.
Abstract:The problem of uplink transmissions in massive connectivity is commonly dealt with using schemes for grant-free random access. When a large number of devices transmit almost synchronously, the receiver may not be able to resolve the collision. This could be addressed by assigning dedicated pilots to each user, leading to a contention-free random access (CFRA), which suffers from low scalability and efficiency. This paper explores contention-based random access (CBRA) schemes for asynchronous access in massive multiple-input multiple-output (MIMO) systems. The symmetry across the accessing users with the same pilots is broken by leveraging the delay information inherent to asynchronous systems and the angle information from massive MIMO to enhance activity detection (AD) and channel estimation (CE). The problem is formulated as a sparse recovery in the delay-angle domain. The challenge is that the recovery signal exhibits both row-sparse and cluster-sparse structure, with unknown cluster sizes and locations. We address this by a cluster-extended sparse Bayesian learning (CE-SBL) algorithm that introduces a new weighted prior to capture the signal structure and extends the expectation maximization (EM) algorithm for hyperparameter estimation. Simulation results demonstrate the superiority of the proposed method in joint AD and CE.
Abstract:Digital twins (DTs) of wireless environments can be utilized to predict the propagation channel and reduce the overhead of required to estimate the channel statistics. However, direct channel prediction requires data-intensive calibration of the DT to capture the environment properties relevant for propagation of electromagnetic signals. We introduce a framework that starts from a satellite image of the environment to produce an uncalibrated DT, which has no or imprecise information about the materials and their electromagnetic properties. The key idea is to use the uncalibrated DT to implicitly provide a geometric prior for the environment. This is utilized to inform a Gaussian process (GP), which permits the use of few channel measurements to attain an accurate prediction of the channel statistics. Additionally, the framework is able to quantify the uncertainty in channel statistics prediction and select rate in ultra-reliable low-latency communication (URLLC) that complies with statistical guarantees. The efficacy of the proposed geometry-informed GP is validated using experimental data obtained through a measurement campaign. Furthermore, the proposed prediction framework is shown to provide significant improvements compared to the benchmarks where i) direct channel statistics prediction is obtained using an uncalibrated DT and (ii) the GP predicts channel statistics using information about the location.
Abstract:Achieving a flexible and efficient sharing of wireless resources among a wide range of novel applications and services is one of the major goals of the sixth-generation of mobile systems (6G). Accordingly, this work investigates the performance of a real-time system that coexists with a broadband service in a frame-based wireless channel. Specifically, we consider real-time remote tracking of an information source, where a device monitors its evolution and sends updates to a base station (BS), which is responsible for real-time source reconstruction and, potentially, remote actuation. To achieve this, the BS employs a grant-free access mechanism to serve the monitoring device together with a broadband user, which share the available wireless resources through orthogonal or non-orthogonal multiple access schemes. We analyse the performance of the system with time-averaged reconstruction error, time-averaged cost of actuation error, and update-delivery cost as performance metrics. Furthermore, we analyse the performance of the broadband user in terms of throughput and energy efficiency. Our results show that an orthogonal resource sharing between the users is beneficial in most cases where the broadband user requires maximum throughput. However, sharing the resources in a non-orthogonal manner leads to a far greater energy efficiency.
Abstract:This work investigates the coexistence of sensing and communication functionalities in a base station (BS) serving a communication user in the uplink and simultaneously detecting a radar target with the same frequency resources. To address inter-functionality interference, we employ rate-splitting (RS) at the communication user and successive interference cancellation (SIC) at the joint radar-communication receiver at the BS. This approach is motivated by RS's proven effectiveness in mitigating inter-user interference among communication users. Building on the proposed system model based on RS, we derive inner bounds on performance in terms of ergodic data information rate for communication and ergodic radar estimation information rate for sensing. Additionally, we present a closed-form solution for the optimal power split in RS that maximizes the communication user's performance. The bounds achieved with RS are compared to conventional methods, including spectral isolation and full spectral sharing with SIC. We demonstrate that RS offers a superior performance trade-off between sensing and communication functionalities compared to traditional approaches. Pertinently, while the original concept of RS deals only with digital signals, this work brings forward RS as a general method for including non-orthogonal access for sensing signals. As a consequence, the work done in this paper provides a systematic and parametrized way to effectuate non-orthogonal sensing and communication waveforms.
Abstract:Training a high-quality Federated Learning (FL) model at the network edge is challenged by limited transmission resources. Although various device scheduling strategies have been proposed, it remains unclear how scheduling decisions affect the FL model performance under temporal constraints. This is pronounced when the wireless medium is shared to enable the participation of heterogeneous Internet of Things (IoT) devices with distinct communication modes: (1) a scheduling (pull) scheme, that selects devices with valuable updates, and (2) random access (push), in which interested devices transmit model parameters. The motivation for pushing data is the improved representation of own data distribution within the trained FL model and thereby better generalization. The scheduling strategy affects the transmission opportunities for push-based communication during the access phase, extending the number of communication rounds required for model convergence. This work investigates the interplay of push-pull interactions in a time-constrained FL setting, where the communication opportunities are finite, with a utility-based analytical model. Using real-world datasets, we provide a performance tradeoff analysis that validates the significance of strategic device scheduling under push-pull wireless access for several practical settings. The simulation results elucidate the impact of the device sampling strategy on learning efficiency under timing constraints.
Abstract:Energy efficiency and information freshness are key requirements for sensor nodes serving Industrial Internet of Things (IIoT) applications, where a sink node collects informative and fresh data before a deadline, e.g., to control an external actuator. Content-based wake-up (CoWu) activates a subset of nodes that hold data relevant for the sink's goal, thereby offering an energy-efficient way to attain objectives related to information freshness. This paper focuses on a scenario where the sink collects fresh information on top-k values, defined as data from the nodes observing the k highest readings at the deadline. We introduce a new metric called top-k Query Age of Information (k-QAoI), which allows us to characterize the performance of CoWu by considering the characteristics of the physical process. Further, we show how to select the CoWu parameters, such as its timing and threshold, to attain both information freshness and energy efficiency. The numerical results reveal the effectiveness of the CoWu approach, which is able to collect top-k data with higher energy efficiency while reducing k-QAoI when compared to round-robin scheduling, especially when the number of nodes is large and the required size of k is small.
Abstract:This paper presents a Digital Twin (DT) framework for the remote control of an Autonomous Guided Vehicle (AGV) within a Network Control System (NCS). The AGV is monitored and controlled using Integrated Sensing and Communications (ISAC). In order to meet the real-time requirements, the DT computes the control signals and dynamically allocates resources for sensing and communication. A Reinforcement Learning (RL) algorithm is derived to learn and provide suitable actions while adjusting for the uncertainty in the AGV's position. We present closed-form expressions for the achievable communication rate and the Cramer-Rao bound (CRB) to determine the required number of Orthogonal Frequency-Division Multiplexing (OFDM) subcarriers, meeting the needs of both sensing and communication. The proposed algorithm is validated through a millimeter-Wave (mmWave) simulation, demonstrating significant improvements in both control precision and communication efficiency.
Abstract:This paper presents communication-constrained distributed conformal risk control (CD-CRC) framework, a novel decision-making framework for sensor networks under communication constraints. Targeting multi-label classification problems, such as segmentation, CD-CRC dynamically adjusts local and global thresholds used to identify significant labels with the goal of ensuring a target false negative rate (FNR), while adhering to communication capacity limits. CD-CRC builds on online exponentiated gradient descent to estimate the relative quality of the observations of different sensors, and on online conformal risk control (CRC) as a mechanism to control local and global thresholds. CD-CRC is proved to offer deterministic worst-case performance guarantees in terms of FNR and communication overhead, while the regret performance in terms of false positive rate (FPR) is characterized as a function of the key hyperparameters. Simulation results highlight the effectiveness of CD-CRC, particularly in communication resource-constrained environments, making it a valuable tool for enhancing the performance and reliability of distributed sensor networks.
Abstract:We consider a Wireless Networked Control System (WNCS) where sensors provide observations to build a DT model of the underlying system dynamics. The focus is on control, scheduling, and resource allocation for sensory observation to ensure timely delivery to the DT model deployed in the cloud. \phuc{Timely and relevant information, as characterized by optimized data acquisition policy and low latency, are instrumental in ensuring that the DT model can accurately estimate and predict system states. However, optimizing closed-loop control with DT and acquiring data for efficient state estimation and control computing pose a non-trivial problem given the limited network resources, partial state vector information, and measurement errors encountered at distributed sensing agents.} To address this, we propose the \emph{Age-of-Loop REinforcement learning and Variational Extended Kalman filter with Robust Belief (AoL-REVERB)}, which leverages an uncertainty-control reinforcement learning solution combined with an algorithm based on Value of Information (VoI) for performing optimal control and selecting the most informative sensors to satisfy the prediction accuracy of DT. Numerical results demonstrate that the DT platform can offer satisfactory performance while halving the communication overhead.