Abstract:Diffusion transformers (DiTs) combine transformer architectures with diffusion models. However, their computational complexity imposes significant limitations on real-time applications and sustainability of AI systems. In this study, we aim to enhance the computational efficiency through model quantization, which represents the weights and activation values with lower precision. Multi-region quantization (MRQ) is introduced to address the asymmetric distribution of network values in DiT blocks by allocating two scaling parameters to sub-regions. Additionally, time-grouping quantization (TGQ) is proposed to reduce quantization error caused by temporal variation in activations. The experimental results show that the proposed algorithm achieves performance comparable to the original full-precision model with only a 0.29 increase in FID at W8A8. Furthermore, it outperforms other baselines at W6A6, thereby confirming its suitability for low-bit quantization. These results highlight the potential of our method to enable efficient real-time generative models.
Abstract:Federated Learning (FL) is increasingly being adopted in military collaborations to develop Large Language Models (LLMs) while preserving data sovereignty. However, prompt injection attacks-malicious manipulations of input prompts-pose new threats that may undermine operational security, disrupt decision-making, and erode trust among allies. This perspective paper highlights four potential vulnerabilities in federated military LLMs: secret data leakage, free-rider exploitation, system disruption, and misinformation spread. To address these potential risks, we propose a human-AI collaborative framework that introduces both technical and policy countermeasures. On the technical side, our framework uses red/blue team wargaming and quality assurance to detect and mitigate adversarial behaviors of shared LLM weights. On the policy side, it promotes joint AI-human policy development and verification of security protocols. Our findings will guide future research and emphasize proactive strategies for emerging military contexts.
Abstract:Modern software-defined networks, such as Open Radio Access Network (O-RAN) systems, rely on artificial intelligence (AI)-powered applications running on controllers interfaced with the radio access network. To ensure that these AI applications operate reliably at runtime, they must be properly calibrated before deployment. A promising and theoretically grounded approach to calibration is conformal prediction (CP), which enhances any AI model by transforming it into a provably reliable set predictor that provides error bars for estimates and decisions. CP requires calibration data that matches the distribution of the environment encountered during runtime. However, in practical scenarios, network controllers often have access only to data collected under different contexts -- such as varying traffic patterns and network conditions -- leading to a mismatch between the calibration and runtime distributions. This paper introduces a novel methodology to address this calibration-test distribution shift. The approach leverages meta-learning to develop a zero-shot estimator of distribution shifts, relying solely on contextual information. The proposed method, called meta-learned context-dependent weighted conformal prediction (ML-WCP), enables effective calibration of AI applications without requiring data from the current context. Additionally, it can incorporate data from multiple contexts to further enhance calibration reliability.
Abstract:Federated learning (FL) is a promising paradigm in distributed learning while preserving the privacy of users. However, the increasing size of recent models makes it unaffordable for a few users to encompass the model. It leads the users to adopt heterogeneous models based on their diverse computing capabilities and network bandwidth. Correspondingly, FL with heterogeneous models should be addressed, given that FL typically involves training a single global model. In this paper, we propose Generative Model-Aided Federated Learning (GeFL), incorporating a generative model that aggregates global knowledge across users of heterogeneous models. Our experiments on various classification tasks demonstrate notable performance improvements of GeFL compared to baselines, as well as limitations in terms of privacy and scalability. To tackle these concerns, we introduce a novel framework, GeFL-F. It trains target networks aided by feature-generative models. We empirically demonstrate the consistent performance gains of GeFL-F, while demonstrating better privacy preservation and robustness to a large number of clients. Codes are available at [1].
Abstract:Bayesian optimization (BO) is a sequential approach for optimizing black-box objective functions using zeroth-order noisy observations. In BO, Gaussian processes (GPs) are employed as probabilistic surrogate models to estimate the objective function based on past observations, guiding the selection of future queries to maximize utility. However, the performance of BO heavily relies on the quality of these probabilistic estimates, which can deteriorate significantly under model misspecification. To address this issue, we introduce localized online conformal prediction-based Bayesian optimization (LOCBO), a BO algorithm that calibrates the GP model through localized online conformal prediction (CP). LOCBO corrects the GP likelihood based on predictive sets produced by LOCBO, and the corrected GP likelihood is then denoised to obtain a calibrated posterior distribution on the objective function. The likelihood calibration step leverages an input-dependent calibration threshold to tailor coverage guarantees to different regions of the input space. Under minimal noise assumptions, we provide theoretical performance guarantees for LOCBO's iterates that hold for the unobserved objective function. These theoretical findings are validated through experiments on synthetic and real-world optimization tasks, demonstrating that LOCBO consistently outperforms state-of-the-art BO algorithms in the presence of model misspecification.
Abstract:Given sufficient data from multiple edge devices, federated learning (FL) enables training a shared model without transmitting private data to a central server. However, FL is generally vulnerable to Byzantine attacks from compromised edge devices, which can significantly degrade the model performance. In this paper, we propose a intuitive plugin that can be integrated into existing FL techniques to achieve Byzantine-Resilience. Key idea is to generate virtual data samples and evaluate model consistency scores across local updates to effectively filter out compromised edge devices. By utilizing this scoring mechanism before the aggregation phase, the proposed plugin enables existing FL techniques to become robust against Byzantine attacks while maintaining their original benefits. Numerical results on medical image classification task validate that plugging the proposed approach into representative FL algorithms, effectively achieves Byzantine resilience. Furthermore, the proposed plugin maintains the original convergence properties of the base FL algorithms when no Byzantine attacks are present.
Abstract:Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized. However, the Non-IID nature of data distribution across devices often hinders model convergence and reduces performance. In this paper, we propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy. Key idea is to synthesize additional data for underrepresented classes on each edge device, leveraging generative AI to create a more balanced dataset across the FL network. Additionally, a balanced sampling approach at the central server selectively includes only the most IID-like devices, accelerating convergence while maximizing the global model's performance. Experimental results validate that our approach significantly improves convergence speed and robustness against data imbalance, establishing a flexible, privacy-preserving FL plugin that is applicable even in data-scarce environments.
Abstract:Integrating hyperscale AI into national defense modeling and simulation (M&S) is crucial for enhancing strategic and operational capabilities. We explore how hyperscale AI can revolutionize defense M\&S by providing unprecedented accuracy, speed, and the ability to simulate complex scenarios. Countries such as the United States and China are at the forefront of adopting these technologies and are experiencing varying degrees of success. Maximizing the potential of hyperscale AI necessitates addressing critical challenges, such as closed networks, long-tail data, complex decision-making, and a shortage of experts. Future directions emphasize the adoption of domestic foundation models, the investment in various GPUs / NPUs, the utilization of big tech services, and the use of open source software. These initiatives will enhance national security, maintain competitive advantages, and promote broader technological and economic progress. With this blueprint, the Republic of Korea can strengthen its defense capabilities and stay ahead of the emerging threats of modern warfare.
Abstract:Detecting occupied subbands is a key task for wireless applications such as unlicensed spectrum access. Recently, detection methods were proposed that extract per-subband features from sub-Nyquist baseband samples and then apply thresholding mechanisms based on held-out data. Such existing solutions can only provide guarantees in terms of false negative rate (FNR) in the asymptotic regime of large held-out data sets. In contrast, this work proposes a threshold mechanism-based conformal risk control (CRC), a method recently introduced in statistics. The proposed CRC-based thresholding technique formally meets user-specified FNR constraints, irrespective of the size of the held-out data set. By applying the proposed CRC-based framework to both reconstruction-based and classification-based sub-Nyquist spectrum sensing techniques, it is verified via experimental results that CRC not only provides theoretical guarantees on the FNR but also offers competitive true negative rate (TNR) performance.
Abstract:Vector Quantized Variational AutoEncoder (VQ-VAE) is an established technique in machine learning for learning discrete representations across various modalities. However, its scalability and applicability are limited by the need to retrain the model to adjust the codebook for different data or model scales. We introduce the Rate-Adaptive VQ-VAE (RAQ-VAE) framework, which addresses this challenge with two novel codebook representation methods: a model-based approach using a clustering-based technique on an existing well-trained VQ-VAE model, and a data-driven approach utilizing a sequence-to-sequence (Seq2Seq) model for variable-rate codebook generation. Our experiments demonstrate that RAQ-VAE achieves effective reconstruction performance across multiple rates, often outperforming conventional fixed-rate VQ-VAE models. This work enhances the adaptability and performance of VQ-VAEs, with broad applications in data reconstruction, generation, and computer vision tasks.