Abstract:Consider an edge computing setting in which a user submits queries for the solution of a linear system to an edge processor, which is subject to time-varying computing availability. The edge processor applies a probabilistic linear solver (PLS) so as to be able to respond to the user's query within the allotted time and computing budget. Feedback to the user is in the form of an uncertainty set. Due to model misspecification, the uncertainty set obtained via a direct application of PLS does not come with coverage guarantees with respect to the true solution of the linear system. This work introduces a new method to calibrate the uncertainty sets produced by PLS with the aim of guaranteeing long-term coverage requirements. The proposed method, referred to as online conformal prediction-PLS (OCP-PLS), assumes sporadic feedback from cloud to edge. This enables the online calibration of uncertainty thresholds via online conformal prediction (OCP), an online optimization method previously studied in the context of prediction models. The validity of OCP-PLS is verified via experiments that bring insights into trade-offs between coverage, prediction set size, and cloud usage.
Abstract:Online conformal prediction enables the runtime calibration of a pre-trained artificial intelligence model using feedback on its performance. Calibration is achieved through set predictions that are updated via online rules so as to ensure long-term coverage guarantees. While recent research has demonstrated the benefits of incorporating prior knowledge into the calibration process, this has come at the cost of replacing coverage guarantees with less tangible regret guarantees based on the quantile loss. This work introduces intermittent mirror online conformal prediction (IM-OCP), a novel runtime calibration framework that integrates prior knowledge, while maintaining long-term coverage and achieving sub-linear regret. IM-OCP features closed-form updates with minimal memory complexity, and is designed to operate under potentially intermittent feedback.
Abstract:We investigate a lossy source compression problem in which both the encoder and decoder are equipped with a pre-trained sequence predictor. We propose an online lossy compression scheme that, under a 0-1 loss distortion function, ensures a deterministic, per-sequence upper bound on the distortion (outage) level for any time instant. The outage guarantees apply irrespective of any assumption on the distribution of the sequences to be encoded or on the quality of the predictor at the encoder and decoder. The proposed method, referred to as online conformal compression (OCC), is built upon online conformal prediction--a novel method for constructing confidence intervals for arbitrary predictors. Numerical results show that OCC achieves a compression rate comparable to that of an idealized scheme in which the encoder, with hindsight, selects the optimal subset of symbols to describe to the decoder, while satisfying the overall outage constraint.
Abstract:Bayesian optimization (BO) is a sequential approach for optimizing black-box objective functions using zeroth-order noisy observations. In BO, Gaussian processes (GPs) are employed as probabilistic surrogate models to estimate the objective function based on past observations, guiding the selection of future queries to maximize utility. However, the performance of BO heavily relies on the quality of these probabilistic estimates, which can deteriorate significantly under model misspecification. To address this issue, we introduce localized online conformal prediction-based Bayesian optimization (LOCBO), a BO algorithm that calibrates the GP model through localized online conformal prediction (CP). LOCBO corrects the GP likelihood based on predictive sets produced by LOCBO, and the corrected GP likelihood is then denoised to obtain a calibrated posterior distribution on the objective function. The likelihood calibration step leverages an input-dependent calibration threshold to tailor coverage guarantees to different regions of the input space. Under minimal noise assumptions, we provide theoretical performance guarantees for LOCBO's iterates that hold for the unobserved objective function. These theoretical findings are validated through experiments on synthetic and real-world optimization tasks, demonstrating that LOCBO consistently outperforms state-of-the-art BO algorithms in the presence of model misspecification.
Abstract:Sequence models have demonstrated the ability to perform tasks like channel equalization and symbol detection by automatically adapting to current channel conditions. This is done without requiring any explicit optimization and by leveraging not only short pilot sequences but also contextual information such as long-term channel statistics. The operating principle underlying automatic adaptation is in-context learning (ICL), an emerging property of sequence models. Prior art adopted transformer-based sequence models, which, however, have a computational complexity scaling quadratically with the context length due to batch processing. Recently, state-space models (SSMs) have emerged as a more efficient alternative, affording a linear inference complexity in the context size. This work explores the potential of SSMs for ICL-based equalization in cell-free massive MIMO systems. Results show that selective SSMs achieve comparable performance to transformer-based models while requiring approximately eight times fewer parameters and five times fewer floating-point operations.
Abstract:We introduce adaptive learn-then-test (aLTT), an efficient hyperparameter selection procedure that provides finite-sample statistical guarantees on the population risk of AI models. Unlike the existing learn-then-test (LTT) technique, which relies on conventional p-value-based multiple hypothesis testing (MHT), aLTT implements sequential data-dependent MHT with early termination by leveraging e-processes. As a result, aLTT can reduce the number of testing rounds, making it particularly well-suited for scenarios in which testing is costly or presents safety risks. Apart from maintaining statistical validity, in applications such as online policy selection for offline reinforcement learning and hyperparameter tuning for engineering systems, aLTT is shown to achieve the same performance as LTT while requiring only a fraction of the testing rounds.
Abstract:This paper presents communication-constrained distributed conformal risk control (CD-CRC) framework, a novel decision-making framework for sensor networks under communication constraints. Targeting multi-label classification problems, such as segmentation, CD-CRC dynamically adjusts local and global thresholds used to identify significant labels with the goal of ensuring a target false negative rate (FNR), while adhering to communication capacity limits. CD-CRC builds on online exponentiated gradient descent to estimate the relative quality of the observations of different sensors, and on online conformal risk control (CRC) as a mechanism to control local and global thresholds. CD-CRC is proved to offer deterministic worst-case performance guarantees in terms of FNR and communication overhead, while the regret performance in terms of false positive rate (FPR) is characterized as a function of the key hyperparameters. Simulation results highlight the effectiveness of CD-CRC, particularly in communication resource-constrained environments, making it a valuable tool for enhancing the performance and reliability of distributed sensor networks.
Abstract:In modern wireless network architectures, such as O-RAN, artificial intelligence (AI)-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control. The AI "apps" are selected on the basis of contextual information such as network conditions, topology, traffic statistics, and design goals. The mapping between context and AI model parameters is ideally done in a zero-shot fashion via an automatic model selection (AMS) mapping that leverages only contextual information without requiring any current data. This paper introduces a general methodology for the online optimization of AMS mappings. Optimizing an AMS mapping is challenging, as it requires exposure to data collected from many different contexts. Therefore, if carried out online, this initial optimization phase would be extremely time consuming. A possible solution is to leverage a digital twin of the physical system to generate synthetic data from multiple simulated contexts. However, given that the simulator at the digital twin is imperfect, a direct use of simulated data for the optimization of the AMS mapping would yield poor performance when tested in the real system. This paper proposes a novel method for the online optimization of AMS mapping that corrects for the bias of the simulator by means of limited real data collected from the physical system. Experimental results for a graph neural network-based power control app demonstrate the significant advantages of the proposed approach.
Abstract:Adaptive Risk Control (ARC) is an online calibration strategy based on set prediction that offers worst-case deterministic long-term risk control, as well as statistical marginal coverage guarantees. ARC adjusts the size of the prediction set by varying a single scalar threshold based on feedback from past decisions. In this work, we introduce Localized Adaptive Risk Control (L-ARC), an online calibration scheme that targets statistical localized risk guarantees ranging from conditional risk to marginal risk, while preserving the worst-case performance of ARC. L-ARC updates a threshold function within a reproducing kernel Hilbert space (RKHS), with the kernel determining the level of localization of the statistical risk guarantee. The theoretical results highlight a trade-off between localization of the statistical risk and convergence speed to the long-term risk target. Thanks to localization, L-ARC is demonstrated via experiments to produce prediction sets with risk guarantees across different data subpopulations, significantly improving the fairness of the calibrated model for tasks such as image segmentation and beam selection in wireless networks.
Abstract:Large pre-trained sequence models, such as transformers, excel as few-shot learners capable of in-context learning (ICL). In ICL, a model is trained to adapt its operation to a new task based on limited contextual information, typically in the form of a few training examples for the given task. Previous work has explored the use of ICL for channel equalization in single-user multi-input and multiple-output (MIMO) systems. In this work, we demonstrate that ICL can be also used to tackle the problem of multi-user equalization in cell-free MIMO systems with limited fronthaul capacity. In this scenario, a task is defined by channel statistics, signal-to-noise ratio, and modulation schemes. The context encompasses the users' pilot sequences, the corresponding quantized received signals, and the current received data signal. Different prompt design strategies are proposed and evaluated that encompass also large-scale fading and modulation information. Experiments demonstrate that ICL-based equalization provides estimates with lower mean squared error as compared to the linear minimum mean squared error equalizer, especially in the presence of limited fronthaul capacity and pilot contamination.