Abstract:In this paper, we present an unsupervised approach for frequency sub-band allocation in wireless networks using graph-based learning. We consider a dense deployment of subnetworks in the factory environment with a limited number of sub-bands which must be optimally allocated to coordinate inter-subnetwork interference. We model the subnetwork deployment as a conflict graph and propose an unsupervised learning approach inspired by the graph colouring heuristic and the Potts model to optimize the sub-band allocation using graph neural networks. The numerical evaluation shows that the proposed method achieves close performance to the centralized greedy colouring sub-band allocation heuristic with lower computational time complexity. In addition, it incurs reduced signalling overhead compared to iterative optimization heuristics that require all the mutual interfering channel information. We further demonstrate that the method is robust to different network settings.
Abstract:Future wireless systems are expected to support mission-critical services demanding higher and higher reliability. In this letter, we dimension the radio resources needed to achieve a given failure probability target for ultra-reliable wireless systems in high interference conditions, assuming a protocol with frequency hopping combined with packet repetitions. We resort to packet erasure channel models and derive the minimum amount of resource units in the case of receiver with and without collision resolution capability, as well as the number of packet repetitions needed for achieving the failure probability target. Analytical results are numerically validated and can be used as a benchmark for realistic system simulations
Abstract:6th Generation (6G) industrial wireless subnetworks are expected to replace wired connectivity for control operation in robots and production modules. Interference management techniques such as centralized power control can improve spectral efficiency in dense deployments of such subnetworks. However, existing solutions for centralized power control may require full channel state information (CSI) of all the desired and interfering links, which may be cumbersome and time-consuming to obtain in dense deployments. This paper presents a novel solution for centralized power control for industrial subnetworks based on Graph Neural Networks (GNNs). The proposed method only requires the subnetwork positioning information, usually known at the central controller, and the knowledge of the desired link channel gain during the execution phase. Simulation results show that our solution achieves similar spectral efficiency as the benchmark schemes requiring full CSI in runtime operations. Also, robustness to changes in the deployment density and environment characteristics with respect to the training phase is verified.
Abstract:Future industrial applications will encompass compelling new use cases requiring stringent performance guarantees over multiple key performance indicators (KPI) such as reliability, dependability, latency, time synchronization, security, etc. Achieving such stringent and diverse service requirements necessitates the design of a special-purpose Industrial Internet of Things (IIoT) network comprising a multitude of specialized functionalities and technological enablers. This article proposes an innovative architecture for such a special-purpose 6G IIoT network incorporating seven functional building blocks categorized into: special-purpose functionalities and enabling technologies. The former consists of Wireless Environment Control, Traffic/Channel Prediction, Proactive Resource Management and End-to-End Optimization functions; whereas the latter includes Synchronization and Coordination, Machine Learning and Artificial Intelligence Algorithms, and Auxiliary Functions. The proposed architecture aims at providing a resource-efficient and holistic solution for the complex and dynamically challenging requirements imposed by future 6G industrial use cases. Selected test scenarios are provided and assessed to illustrate cross-functional collaboration and demonstrate the applicability of the proposed architecture in a wireless IIoT network.