Abstract:In this work, we consider the target detection problem in a multistatic integrated sensing and communication (ISAC) scenario characterized by the cell-free MIMO communication network deployment, where multiple radio units (RUs) in the network cooperate with each other for the sensing task. By exploiting the angle resolution from multiple arrays deployed in the network and the delay resolution from the communication signals, i.e., orthogonal frequency division multiplexing (OFDM) signals, we formulate a cooperative sensing problem with coherent data fusion of multiple RUs' observations and propose a sparse Bayesian learning (SBL)-based method, where the global coordinates of target locations are directly detected. Intensive numerical results indicate promising target detection performance of the proposed SBL-based method. Additionally, a theoretical analysis of the considered cooperative multistatic sensing task is provided using the pairwise error probability (PEP) analysis, which can be used to provide design insights, e.g., illumination and beam patterns, for the considered problem.
Abstract:Continuous phase modulation (CPM) has extensive applications in wireless communications due to its high spectral and power efficiency. However, its nonlinear characteristics pose significant challenges for detection in frequency selective fading channels. This paper proposes an iterative receiver tailored for the detection of CPM signals over frequency selective fading channels. This design leverages the factor graph framework to integrate equalization, demodulation, and decoding functions. The equalizer employs the unitary approximate message passing (UAMP) algorithm, while the unitary transformation is implemented using the fast Fourier transform (FFT) with the aid of a cyclic prefix (CP), thereby achieving low computational complexity while with high performance. For CPM demodulation and channel decoding, with belief propagation (BP), we design a message passing-based maximum a posteriori (MAP) algorithm, and the message exchange between the demodulator, decoder and equalizer is elaborated. With proper message passing schedules, the receiver can achieve fast convergence. Simulation results show that compared with existing turbo receivers, the proposed receiver delivers significant performance enhancement with low computational complexity.
Abstract:This paper investigates radar-assisted user acquisition for downlink multi-user multiple-input multiple-output (MIMO) transmission using Orthogonal Frequency Division Multiplexing (OFDM) signals. Specifically, we formulate a concise mathematical model for the user acquisition problem, where each user is characterized by its delay and beamspace response. Therefore, we propose a two-stage method for user acquisition, where the Multiple Signal Classification (MUSIC) algorithm is adopted for delay estimation, and then a least absolute shrinkage and selection operator (LASSO) is applied for estimating the user response in the beamspace. Furthermore, we also provide a comprehensive performance analysis of the considered problem based on the pair-wise error probability (PEP). Particularly, we show that the rank and the geometric mean of non-zero eigenvalues of the squared beamspace difference matrix determines the user acquisition performance. More importantly, we reveal that simultaneously probing multiple beams outperforms concentrating power on a specific beam direction in each time slot under the power constraint, when only limited OFDM symbols are transmitted. Our numerical results confirm our conclusions and also demonstrate a promising acquisition performance of the proposed two-stage method.
Abstract:This paper studies improving the detector performance which considers the activity state (AS) temporal correlation of the user equipments (UEs) in the time domain under the uplink grant-free non-orthogonal multiple access (GF-NOMA) system. The Bernoulli Gaussian-Markov chain (BG-MC) probability model is used for exploiting both the sparsity and slow change characteristic of the AS of the UE. The GAMP Bernoulli Gaussian-Markov chain (GAMP-BG-MC) algorithm is proposed to improve the detector performance, which can utilize the bidirectional message passing between the neighboring time slots to fully exploit the temporally-correlated AS of the UE. Furthermore, the parameters of the BG-MC model can be updated adaptively during the estimation procedure with unknown system statistics. Simulation results show that the proposed algorithm can improve the detection accuracy compared with the existing methods while keeping the same order complexity.
Abstract:In this paper, we present CharacterGLM, a series of models built upon ChatGLM, with model sizes ranging from 6B to 66B parameters. Our CharacterGLM is designed for generating Character-based Dialogues (CharacterDial), which aims to equip a conversational AI system with character customization for satisfying people's inherent social desires and emotional needs. On top of CharacterGLM, we can customize various AI characters or social agents by configuring their attributes (identities, interests, viewpoints, experiences, achievements, social relationships, etc.) and behaviors (linguistic features, emotional expressions, interaction patterns, etc.). Our model outperforms most mainstream close-source large langauge models, including the GPT series, especially in terms of consistency, human-likeness, and engagement according to manual evaluations. We will release our 6B version of CharacterGLM and a subset of training data to facilitate further research development in the direction of character-based dialogue generation.
Abstract:This paper proposes a method for reducing {third-party} exposure to electromagnetic fields (EMF) by exploiting the capability of a reconfigurable intelligent surfaces' (RIS) to manipulate the electromagnetic environment. We consider users capable of multi-beam communication, such that a user can use a set of different propagation paths enabled by the RIS. The optimization objective is to find propagation alternatives that allow to maintain the target quality of service while minimizing the level of EMF at surrounding non-intended users (NUEs). We provide an evolutionary heuristic solution based on Genetic Algorithm (GA) for power equalization and multi-beam selection of a codebook at the Base Station. Our results show valuable insights into how RIS-assisted multi-beam communications can mitigate EMF exposure with minimal degradation of the spectral efficiency.
Abstract:We propose a method for channel training and precoding in FDD massive MIMO based on deep neural networks (DNNs), exploiting Downlink (DL) channel covariance knowledge. The DNN is optimized to maximize the DL multi-user sum-rate, by producing a pre-beamforming matrix based on user channel covariances that maps the original channel vectors to effective channels. Measurements of these effective channels are received at the users via common pilot transmission and sent back to the base station (BS) through analog feedback without further processing. The BS estimates the effective channels from received feedback and constructs a linear precoder by concatenating the optimized pre-beamforming matrix with a zero-forcing precoder over the effective channels. We show that the proposed method yields significantly higher sum-rates than the state-of-the-art DNN-based channel training and precoding scheme, especially in scenarios with small pilot and feedback size relative to the channel coherence block length. Unlike many works in the literature, our proposition does not involve deployment of a DNN at the user side, which typically comes at a high computational cost and parameter-transmission overhead on the system, and is therefore considerably more practical.
Abstract:This project involved participation in the DCASE 2022 Competition (Task 6) which had two subtasks: (1) Automated Audio Captioning and (2) Language-Based Audio Retrieval. The first subtask involved the generation of a textual description for audio samples, while the goal of the second was to find audio samples within a fixed dataset that match a given description. For both subtasks, the Clotho dataset was used. The models were evaluated on BLEU1, BLEU2, BLEU3, ROUGEL, METEOR, CIDEr, SPICE, and SPIDEr scores for audio captioning and R1, R5, R10 and mARP10 scores for audio retrieval. We have conducted a handful of experiments that modify the baseline models for these tasks. Our final architecture for Automated Audio Captioning is close to the baseline performance, while our model for Language-Based Audio Retrieval has surpassed its counterpart.
Abstract:In this work, we formulate \textbf{T}ext \textbf{C}lassification as a \textbf{M}atching problem between the text and the labels, and propose a simple yet effective framework named TCM. Compared with previous text classification approaches, TCM takes advantage of the fine-grained semantic information of the classification labels, which helps distinguish each class better when the class number is large, especially in low-resource scenarios. TCM is also easy to implement and is compatible with various large pretrained language models. We evaluate TCM on 4 text classification datasets (each with 20+ labels) in both few-shot and full-data settings, and this model demonstrates significant improvements over other text classification paradigms. We also conduct extensive experiments with different variants of TCM and discuss the underlying factors of its success. Our method and analyses offer a new perspective on text classification.
Abstract:Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems. However, previous works mainly focus on showing and evaluating the conversational performance of the released dialogue model, ignoring the discussion of some key factors towards a powerful human-like chatbot, especially in Chinese scenarios. In this paper, we conduct extensive experiments to investigate these under-explored factors, including data quality control, model architecture designs, training approaches, and decoding strategies. We propose EVA2.0, a large-scale pre-trained open-domain Chinese dialogue model with 2.8 billion parameters, and make our models and code publicly available. To our knowledge, EVA2.0 is the largest open-source Chinese dialogue model. Automatic and human evaluations show that our model significantly outperforms other open-source counterparts. We also discuss the limitations of this work by presenting some failure cases and pose some future directions.