Abstract:This paper investigates radar-assisted user acquisition for downlink multi-user multiple-input multiple-output (MIMO) transmission using Orthogonal Frequency Division Multiplexing (OFDM) signals. Specifically, we formulate a concise mathematical model for the user acquisition problem, where each user is characterized by its delay and beamspace response. Therefore, we propose a two-stage method for user acquisition, where the Multiple Signal Classification (MUSIC) algorithm is adopted for delay estimation, and then a least absolute shrinkage and selection operator (LASSO) is applied for estimating the user response in the beamspace. Furthermore, we also provide a comprehensive performance analysis of the considered problem based on the pair-wise error probability (PEP). Particularly, we show that the rank and the geometric mean of non-zero eigenvalues of the squared beamspace difference matrix determines the user acquisition performance. More importantly, we reveal that simultaneously probing multiple beams outperforms concentrating power on a specific beam direction in each time slot under the power constraint, when only limited OFDM symbols are transmitted. Our numerical results confirm our conclusions and also demonstrate a promising acquisition performance of the proposed two-stage method.
Abstract:Charts are a powerful tool for visually conveying complex data, but their comprehension poses a challenge due to the diverse chart types and intricate components. Existing chart comprehension methods suffer from either heuristic rules or an over-reliance on OCR systems, resulting in suboptimal performance. To address these issues, we present ChartReader, a unified framework that seamlessly integrates chart derendering and comprehension tasks. Our approach includes a transformer-based chart component detection module and an extended pre-trained vision-language model for chart-to-X tasks. By learning the rules of charts automatically from annotated datasets, our approach eliminates the need for manual rule-making, reducing effort and enhancing accuracy.~We also introduce a data variable replacement technique and extend the input and position embeddings of the pre-trained model for cross-task training. We evaluate ChartReader on Chart-to-Table, ChartQA, and Chart-to-Text tasks, demonstrating its superiority over existing methods. Our proposed framework can significantly reduce the manual effort involved in chart analysis, providing a step towards a universal chart understanding model. Moreover, our approach offers opportunities for plug-and-play integration with mainstream LLMs such as T5 and TaPas, extending their capability to chart comprehension tasks. The code is available at https://github.com/zhiqic/ChartReader.
Abstract:Grounded Situation Recognition (GSR) aims to generate structured semantic summaries of images for "human-like" event understanding. Specifically, GSR task not only detects the salient activity verb (e.g. buying), but also predicts all corresponding semantic roles (e.g. agent and goods). Inspired by object detection and image captioning tasks, existing methods typically employ a two-stage framework: 1) detect the activity verb, and then 2) predict semantic roles based on the detected verb. Obviously, this illogical framework constitutes a huge obstacle to semantic understanding. First, pre-detecting verbs solely without semantic roles inevitably fails to distinguish many similar daily activities (e.g., offering and giving, buying and selling). Second, predicting semantic roles in a closed auto-regressive manner can hardly exploit the semantic relations among the verb and roles. To this end, in this paper we propose a novel two-stage framework that focuses on utilizing such bidirectional relations within verbs and roles. In the first stage, instead of pre-detecting the verb, we postpone the detection step and assume a pseudo label, where an intermediate representation for each corresponding semantic role is learned from images. In the second stage, we exploit transformer layers to unearth the potential semantic relations within both verbs and semantic roles. With the help of a set of support images, an alternate learning scheme is designed to simultaneously optimize the results: update the verb using nouns corresponding to the image, and update nouns using verbs from support images. Extensive experimental results on challenging SWiG benchmarks show that our renovated framework outperforms other state-of-the-art methods under various metrics.
Abstract:This paper explores the task of Difficulty-Controllable Question Generation (DCQG), which aims at generating questions with required difficulty levels. Previous research on this task mainly defines the difficulty of a question as whether it can be correctly answered by a Question Answering (QA) system, lacking interpretability and controllability. In our work, we redefine question difficulty as the number of inference steps required to answer it and argue that Question Generation (QG) systems should have stronger control over the logic of generated questions. To this end, we propose a novel framework that progressively increases question difficulty through step-by-step rewriting under the guidance of an extracted reasoning chain. A dataset is automatically constructed to facilitate the research, on which extensive experiments are conducted to test the performance of our method.
Abstract:In the past few years, there has been a surge of interest in multi-modal problems, from image captioning to visual question answering and beyond. In this paper, we focus on hate speech detection in multi-modal memes wherein memes pose an interesting multi-modal fusion problem. We aim to solve the Facebook Meme Challenge \cite{kiela2020hateful} which aims to solve a binary classification problem of predicting whether a meme is hateful or not. A crucial characteristic of the challenge is that it includes "benign confounders" to counter the possibility of models exploiting unimodal priors. The challenge states that the state-of-the-art models perform poorly compared to humans. During the analysis of the dataset, we realized that majority of the data points which are originally hateful are turned into benign just be describing the image of the meme. Also, majority of the multi-modal baselines give more preference to the hate speech (language modality). To tackle these problems, we explore the visual modality using object detection and image captioning models to fetch the "actual caption" and then combine it with the multi-modal representation to perform binary classification. This approach tackles the benign text confounders present in the dataset to improve the performance. Another approach we experiment with is to improve the prediction with sentiment analysis. Instead of only using multi-modal representations obtained from pre-trained neural networks, we also include the unimodal sentiment to enrich the features. We perform a detailed analysis of the above two approaches, providing compelling reasons in favor of the methodologies used.
Abstract:This paper reviews the NTIRE 2020 challenge on video quality mapping (VQM), which addresses the issues of quality mapping from source video domain to target video domain. The challenge includes both a supervised track (track 1) and a weakly-supervised track (track 2) for two benchmark datasets. In particular, track 1 offers a new Internet video benchmark, requiring algorithms to learn the map from more compressed videos to less compressed videos in a supervised training manner. In track 2, algorithms are required to learn the quality mapping from one device to another when their quality varies substantially and weakly-aligned video pairs are available. For track 1, in total 7 teams competed in the final test phase, demonstrating novel and effective solutions to the problem. For track 2, some existing methods are evaluated, showing promising solutions to the weakly-supervised video quality mapping problem.
Abstract:Deep reinforcement learning (RL) has been a commonly-used strategy for the abstractive summarization task to address both the exposure bias and non-differentiable task issues. However, the conventional reward Rouge-L simply looks for exact n-grams matches between candidates and annotated references, which inevitably makes the generated sentences repetitive and incoherent. In this paper, instead of Rouge-L, we explore the practicability of utilizing the distributional semantics to measure the matching degrees. With distributional semantics, sentence-level evaluation can be obtained, and semantically-correct phrases can also be generated without being limited to the surface form of the reference sentences. Human judgments on Gigaword and CNN/Daily Mail datasets show that our proposed distributional semantics reward (DSR) has distinct superiority in capturing the lexical and compositional diversity of natural language.