Abstract:Automatic prompt engineering aims to enhance the generation quality of large language models (LLMs). Recent works utilize feedbacks generated from erroneous cases to guide the prompt optimization. During inference, they may further retrieve several semantically-related exemplars and concatenate them to the optimized prompts to improve the performance. However, those works only utilize the feedback at the current step, ignoring historical and unseleccted feedbacks which are potentially beneficial. Moreover, the selection of exemplars only considers the general semantic relationship and may not be optimal in terms of task performance and matching with the optimized prompt. In this work, we propose an Exemplar-Guided Reflection with Memory mechanism (ERM) to realize more efficient and accurate prompt optimization. Specifically, we design an exemplar-guided reflection mechanism where the feedback generation is additionally guided by the generated exemplars. We further build two kinds of memory to fully utilize the historical feedback information and support more effective exemplar retrieval. Empirical evaluations show our method surpasses previous state-of-the-arts with less optimization steps, i.e., improving F1 score by 10.1 on LIAR dataset, and reducing half of the optimization steps on ProTeGi.
Abstract:Providing Emotional Support (ES) to soothe people in emotional distress is an essential capability in social interactions. Most existing researches on building ES conversation systems only considered single-turn interactions with users, which was over-simplified. In comparison, multi-turn ES conversation systems can provide ES more effectively, but face several new technical challenges, including: (1) how to adopt appropriate support strategies to achieve the long-term dialogue goal of comforting the user's emotion; (2) how to dynamically model the user's state. In this paper, we propose a novel system MultiESC to address these issues. For strategy planning, drawing inspiration from the A* search algorithm, we propose lookahead heuristics to estimate the future user feedback after using particular strategies, which helps to select strategies that can lead to the best long-term effects. For user state modeling, MultiESC focuses on capturing users' subtle emotional expressions and understanding their emotion causes. Extensive experiments show that MultiESC significantly outperforms competitive baselines in both dialogue generation and strategy planning. Our codes are available at https://github.com/lwgkzl/MultiESC.
Abstract:With the rise of telemedicine, the task of developing Dialogue Systems for Medical Diagnosis (DSMD) has received much attention in recent years. Different from early researches that needed to rely on extra human resources and expertise to help construct the system, recent researches focused on how to build DSMD in a purely data-driven manner. However, the previous data-driven DSMD methods largely overlooked the system interpretability, which is critical for a medical application, and they also suffered from the data sparsity issue at the same time. In this paper, we explore how to bring interpretability to data-driven DSMD. Specifically, we propose a more interpretable decision process to implement the dialogue manager of DSMD by reasonably mimicking real doctors' inquiry logics, and we devise a model with highly transparent components to conduct the inference. Moreover, we collect a new DSMD dataset, which has a much larger scale, more diverse patterns and is of higher quality than the existing ones. The experiments show that our method obtains 7.7%, 10.0%, 3.0% absolute improvement in diagnosis accuracy respectively on three datasets, demonstrating the effectiveness of its rational decision process and model design. Our codes and the GMD-12 dataset are available at https://github.com/lwgkzl/BR-Agent.
Abstract:Recent years have witnessed the dramatic growth of paper volumes with plenty of new research papers published every day, especially in the area of computer science. How to glean papers worth reading from the massive literature to do a quick survey or keep up with the latest advancement about a specific research topic has become a challenging task. Existing academic search engines such as Google Scholar return relevant papers by individually calculating the relevance between each paper and query. However, such systems usually omit the prerequisite chains of a research topic and cannot form a meaningful reading path. In this paper, we introduce a new task named Reading Path Generation (RPG) which aims at automatically producing a path of papers to read for a given query. To serve as a research benchmark, we further propose SurveyBank, a dataset consisting of large quantities of survey papers in the field of computer science as well as their citation relationships. Each survey paper contains key phrases extracted from its title and multi-level reading lists inferred from its references. Furthermore, we propose a graph-optimization-based approach for reading path generation which takes the relationship between papers into account. Extensive evaluations demonstrate that our approach outperforms other baselines. A Real-time Reading Path Generation System (RePaGer) has been also implemented with our designed model. To the best of our knowledge, we are the first to target this important research problem. Our source code of RePaGer system and SurveyBank dataset can be found on here.
Abstract:Existing unsupervised document hashing methods are mostly established on generative models. Due to the difficulties of capturing long dependency structures, these methods rarely model the raw documents directly, but instead to model the features extracted from them (e.g. bag-of-words (BOW), TFIDF). In this paper, we propose to learn hash codes from BERT embeddings after observing their tremendous successes on downstream tasks. As a first try, we modify existing generative hashing models to accommodate the BERT embeddings. However, little improvement is observed over the codes learned from the old BOW or TFIDF features. We attribute this to the reconstruction requirement in the generative hashing, which will enforce irrelevant information that is abundant in the BERT embeddings also compressed into the codes. To remedy this issue, a new unsupervised hashing paradigm is further proposed based on the mutual information (MI) maximization principle. Specifically, the method first constructs appropriate global and local codes from the documents and then seeks to maximize their mutual information. Experimental results on three benchmark datasets demonstrate that the proposed method is able to generate hash codes that outperform existing ones learned from BOW features by a substantial margin.
Abstract:Graph-level representations are critical in various real-world applications, such as predicting the properties of molecules. But in practice, precise graph annotations are generally very expensive and time-consuming. To address this issue, graph contrastive learning constructs instance discrimination task which pulls together positive pairs (augmentation pairs of the same graph) and pushes away negative pairs (augmentation pairs of different graphs) for unsupervised representation learning. However, since for a query, its negatives are uniformly sampled from all graphs, existing methods suffer from the critical sampling bias issue, i.e., the negatives likely having the same semantic structure with the query, leading to performance degradation. To mitigate this sampling bias issue, in this paper, we propose a Prototypical Graph Contrastive Learning (PGCL) approach. Specifically, PGCL models the underlying semantic structure of the graph data via clustering semantically similar graphs into the same group, and simultaneously encourages the clustering consistency for different augmentations of the same graph. Then given a query, it performs negative sampling via drawing the graphs from those clusters that differ from the cluster of query, which ensures the semantic difference between query and its negative samples. Moreover, for a query, PGCL further reweights its negative samples based on the distance between their prototypes (cluster centroids) and the query prototype such that those negatives having moderate prototype distance enjoy relatively large weights. This reweighting strategy is proved to be more effective than uniform sampling. Experimental results on various graph benchmarks testify the advantages of our PGCL over state-of-the-art methods.
Abstract:With the need of fast retrieval speed and small memory footprint, document hashing has been playing a crucial role in large-scale information retrieval. To generate high-quality hashing code, both semantics and neighborhood information are crucial. However, most existing methods leverage only one of them or simply combine them via some intuitive criteria, lacking a theoretical principle to guide the integration process. In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model. To deal with the complicated correlations among documents, we further propose a tree-structured approximation method for learning. Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones. Extensive experimental results on three benchmark datasets show that our method achieves superior performance over state-of-the-art methods, demonstrating the effectiveness of the proposed model for simultaneously preserving semantic and neighborhood information.\
Abstract:This paper explores the task of Difficulty-Controllable Question Generation (DCQG), which aims at generating questions with required difficulty levels. Previous research on this task mainly defines the difficulty of a question as whether it can be correctly answered by a Question Answering (QA) system, lacking interpretability and controllability. In our work, we redefine question difficulty as the number of inference steps required to answer it and argue that Question Generation (QG) systems should have stronger control over the logic of generated questions. To this end, we propose a novel framework that progressively increases question difficulty through step-by-step rewriting under the guidance of an extracted reasoning chain. A dataset is automatically constructed to facilitate the research, on which extensive experiments are conducted to test the performance of our method.
Abstract:For task-oriented dialog systems, training a Reinforcement Learning (RL) based Dialog Management module suffers from low sample efficiency and slow convergence speed due to the sparse rewards in RL.To solve this problem, many strategies have been proposed to give proper rewards when training RL, but their rewards lack interpretability and cannot accurately estimate the distribution of state-action pairs in real dialogs. In this paper, we propose a multi-level reward modeling approach that factorizes a reward into a three-level hierarchy: domain, act, and slot. Based on inverse adversarial reinforcement learning, our designed reward model can provide more accurate and explainable reward signals for state-action pairs.Extensive evaluations show that our approach can be applied to a wide range of reinforcement learning-based dialog systems and significantly improves both the performance and the speed of convergence.
Abstract:Taxonomy is a hierarchically structured knowledge graph that plays a crucial role in machine intelligence. The taxonomy expansion task aims to find a position for a new term in an existing taxonomy to capture the emerging knowledge in the world and keep the taxonomy dynamically updated. Previous taxonomy expansion solutions neglect valuable information brought by the hierarchical structure and evaluate the correctness of merely an added edge, which downgrade the problem to node-pair scoring or mini-path classification. In this paper, we propose the Hierarchy Expansion Framework (HEF), which fully exploits the hierarchical structure's properties to maximize the coherence of expanded taxonomy. HEF makes use of taxonomy's hierarchical structure in multiple aspects: i) HEF utilizes subtrees containing most relevant nodes as self-supervision data for a complete comparison of parental and sibling relations; ii) HEF adopts a coherence modeling module to evaluate the coherence of a taxonomy's subtree by integrating hypernymy relation detection and several tree-exclusive features; iii) HEF introduces the Fitting Score for position selection, which explicitly evaluates both path and level selections and takes full advantage of parental relations to interchange information for disambiguation and self-correction. Extensive experiments show that by better exploiting the hierarchical structure and optimizing taxonomy's coherence, HEF vastly surpasses the prior state-of-the-art on three benchmark datasets by an average improvement of 46.7% in accuracy and 32.3% in mean reciprocal rank.