Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia
Abstract:Although transformer-based methods have achieved great success in multi-scale temporal pattern interaction modeling, two key challenges limit their further development: (1) Individual time points contain less semantic information, and leveraging attention to model pair-wise interactions may cause the information utilization bottleneck. (2) Multiple inherent temporal variations (e.g., rising, falling, and fluctuating) entangled in temporal patterns. To this end, we propose Adaptive Multi-Scale Hypergraph Transformer (Ada-MSHyper) for time series forecasting. Specifically, an adaptive hypergraph learning module is designed to provide foundations for modeling group-wise interactions, then a multi-scale interaction module is introduced to promote more comprehensive pattern interactions at different scales. In addition, a node and hyperedge constraint mechanism is introduced to cluster nodes with similar semantic information and differentiate the temporal variations within each scales. Extensive experiments on 11 real-world datasets demonstrate that Ada-MSHyper achieves state-of-the-art performance, reducing prediction errors by an average of 4.56%, 10.38%, and 4.97% in MSE for long-range, short-range, and ultra-long-range time series forecasting, respectively. Code is available at https://github.com/shangzongjiang/Ada-MSHyper.
Abstract:Temporal Knowledge Graph (TKG) representation learning aims to map temporal evolving entities and relations to embedded representations in a continuous low-dimensional vector space. However, existing approaches cannot capture the temporal evolution of high-order correlations in TKGs. To this end, we propose a Deep Evolutionary Clustering jointed temporal knowledge graph Representation Learning approach (DECRL). Specifically, a deep evolutionary clustering module is proposed to capture the temporal evolution of high-order correlations among entities. Furthermore, a cluster-aware unsupervised alignment mechanism is introduced to ensure the precise one-to-one alignment of soft overlapping clusters across timestamps, thereby maintaining the temporal smoothness of clusters. In addition, an implicit correlation encoder is introduced to capture latent correlations between any pair of clusters under the guidance of a global graph. Extensive experiments on seven real-world datasets demonstrate that DECRL achieves the state-of-the-art performances, outperforming the best baseline by an average of 9.53%, 12.98%, 10.42%, and 14.68% in MRR, Hits@1, Hits@3, and Hits@10, respectively.
Abstract:With the increasing scale of models, the need for efficient distributed training has become increasingly urgent. Recently, many synchronous pipeline parallelism approaches have been proposed to improve training throughput. However, these approaches still suffer from two major issues, i.e., pipeline bubbles caused by periodic flushing and extra communication due to the increasing number of pipeline stages. To this end, we propose BitPipe, a bidirectional interleaved pipeline parallelism for accelerating large models training. Specifically, a hybrid scheme of fusing interleaved pipelines with bidirectional pipelines is proposed to reduce the computational time of each single micro-batch and multiply the number of devices executing simultaneously. A V-shaped schedule with eager gradient synchronization is introduced to reduce and overlap the communication between devices. Experiments conducted on up to 32 GPUs show that BitPipe improves the training throughput of GPT-style and BERT-style models by 1.05x-1.28x compared to the state-of-the-art synchronous approaches. The code of our implementation is available at https://github.com/wuhouming/BitPipe.
Abstract:Graph anomaly detection (GAD), which aims to identify nodes in a graph that significantly deviate from normal patterns, plays a crucial role in broad application domains. Existing GAD methods, whether supervised or unsupervised, are one-model-for-one-dataset approaches, i.e., training a separate model for each graph dataset. This limits their applicability in real-world scenarios where training on the target graph data is not possible due to issues like data privacy. To overcome this limitation, we propose a novel zero-shot generalist GAD approach UNPrompt that trains a one-for-all detection model, requiring the training of one GAD model on a single graph dataset and then effectively generalizing to detect anomalies in other graph datasets without any retraining or fine-tuning. The key insight in UNPrompt is that i) the predictability of latent node attributes can serve as a generalized anomaly measure and ii) highly generalized normal and abnormal graph patterns can be learned via latent node attribute prediction in a properly normalized node attribute space. UNPrompt achieves generalist GAD through two main modules: one module aligns the dimensionality and semantics of node attributes across different graphs via coordinate-wise normalization in a projected space, while another module learns generalized neighborhood prompts that support the use of latent node attribute predictability as an anomaly score across different datasets. Extensive experiments on real-world GAD datasets show that UNPrompt significantly outperforms diverse competing methods under the generalist GAD setting, and it also has strong superiority under the one-model-for-one-dataset setting.
Abstract:The integration of large language model (LLM) techniques in the field of medical analysis has brought about significant advancements, yet the scarcity of large, diverse, and well-annotated datasets remains a major challenge. Medical data and tasks, which vary in format, size, and other parameters, require extensive preprocessing and standardization for effective use in training LLMs. To address these challenges, we introduce MedINST, the Meta Dataset of Biomedical Instructions, a novel multi-domain, multi-task instructional meta-dataset. MedINST comprises 133 biomedical NLP tasks and over 7 million training samples, making it the most comprehensive biomedical instruction dataset to date. Using MedINST as the meta dataset, we curate MedINST32, a challenging benchmark with different task difficulties aiming to evaluate LLMs' generalization ability. We fine-tune several LLMs on MedINST and evaluate on MedINST32, showcasing enhanced cross-task generalization.
Abstract:Large language models (LLMs) excel in various tasks but face deployment challenges due to hardware constraints. We propose density-aware post-training weight-only quantization (DAQ), which has two stages: 1) density-centric alignment, which identifies the center of high-density weights and centers the dynamic range on this point to align high-density weight regions with floating-point high-precision regions; 2) learnable dynamic range adjustment, which adjusts the dynamic range by optimizing quantization parameters (i.e., scale and zero-point) based on the impact of weights on the model output. Experiments on LLaMA and LLaMA-2 show that DAQ consistently outperforms the best baseline method, reducing perplexity loss by an average of 22.8% on LLaMA and 19.6% on LLaMA-2. Our code is available at https://github.com/LuoYingSong/DAQ.
Abstract:Class-incremental learning (CIL) aims to continually learn a sequence of tasks, with each task consisting of a set of unique classes. Graph CIL (GCIL) follows the same setting but needs to deal with graph tasks (e.g., node classification in a graph). The key characteristic of CIL lies in the absence of task identifiers (IDs) during inference, which causes a significant challenge in separating classes from different tasks (i.e., inter-task class separation). Being able to accurately predict the task IDs can help address this issue, but it is a challenging problem. In this paper, we show theoretically that accurate task ID prediction on graph data can be achieved by a Laplacian smoothing-based graph task profiling approach, in which each graph task is modeled by a task prototype based on Laplacian smoothing over the graph. It guarantees that the task prototypes of the same graph task are nearly the same with a large smoothing step, while those of different tasks are distinct due to differences in graph structure and node attributes. Further, to avoid the catastrophic forgetting of the knowledge learned in previous graph tasks, we propose a novel graph prompting approach for GCIL which learns a small discriminative graph prompt for each task, essentially resulting in a separate classification model for each task. The prompt learning requires the training of a single graph neural network (GNN) only once on the first task, and no data replay is required thereafter, thereby obtaining a GCIL model being both replay-free and forget-free. Extensive experiments on four GCIL benchmarks show that i) our task prototype-based method can achieve 100% task ID prediction accuracy on all four datasets, ii) our GCIL model significantly outperforms state-of-the-art competing methods by at least 18% in average CIL accuracy, and iii) our model is fully free of forgetting on the four datasets.
Abstract:In psychotherapy, therapeutic outcome assessment, or treatment outcome evaluation, is essential for enhancing mental health care by systematically evaluating therapeutic processes and outcomes. Existing large language model approaches often focus on therapist-centered, single-session evaluations, neglecting the client's subjective experience and longitudinal progress across multiple sessions. To address these limitations, we propose IPAEval, a client-Informed Psychological Assessment-based Evaluation framework that automates treatment outcome evaluations from the client's perspective using clinical interviews. IPAEval integrates cross-session client-contextual assessment and session-focused client-dynamics assessment to provide a comprehensive understanding of therapeutic progress. Experiments on our newly developed TheraPhase dataset demonstrate that IPAEval effectively tracks symptom severity and treatment outcomes over multiple sessions, outperforming previous single-session models and validating the benefits of items-aware reasoning mechanisms.
Abstract:Time-Sensitive Question Answering (TSQA) demands the effective utilization of specific temporal contexts, encompassing multiple time-evolving facts, to address time-sensitive questions. This necessitates not only the parsing of temporal information within questions but also the identification and understanding of time-evolving facts to generate accurate answers. However, current large language models still have limited sensitivity to temporal information and their inadequate temporal reasoning capabilities.In this paper, we propose a novel framework that enhances temporal awareness and reasoning through Temporal Information-Aware Embedding and Granular Contrastive Reinforcement Learning. Experimental results on four TSQA datasets demonstrate that our framework significantly outperforms existing LLMs in TSQA tasks, marking a step forward in bridging the performance gap between machine and human temporal understanding and reasoning.
Abstract:In recent years, continual learning with pre-training (CLPT) has received widespread interest, instead of its traditional focus of training from scratch. The use of strong pre-trained models (PTMs) can greatly facilitate knowledge transfer and alleviate catastrophic forgetting, but also suffers from progressive overfitting of pre-trained knowledge into specific downstream tasks. A majority of current efforts often keep the PTMs frozen and incorporate task-specific prompts to instruct representation learning, coupled with a prompt selection process for inference. However, due to the limited capacity of prompt parameters, this strategy demonstrates only sub-optimal performance in continual learning. In comparison, tuning all parameters of PTMs often provides the greatest potential for representation learning, making sequential fine-tuning (Seq FT) a fundamental baseline that has been overlooked in CLPT. To this end, we present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT. Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Classifier Alignment (SLCA++) framework to unleash the power of Seq FT, serving as a strong baseline approach for CLPT. Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Classifier Alignment to align the disjoint classification layers in a post-hoc fashion. We further enhance the efficacy of SL with a symmetric cross-entropy loss, as well as employ a parameter-efficient strategy to implement Seq FT with SLCA++. Across a variety of continual learning scenarios on image classification benchmarks, our approach provides substantial improvements and outperforms state-of-the-art methods by a large margin. Code: https://github.com/GengDavid/SLCA.