Abstract:With the rapid expansion of cloud computing infrastructure, energy consumption has become a critical challenge, driving the need for accurate and efficient prediction models. This study proposes a novel Vector Weighted Average Kernel Extreme Learning Machine (VWAA-KELM) model to enhance energy consumption prediction in cloud computing environments. By integrating a vector weighted average algorithm (VWAA) with kernel extreme learning machine (KELM), the proposed model dynamically adjusts feature weights and optimizes kernel functions, significantly improving prediction accuracy and generalization. Experimental results demonstrate the superior performance of VWAA-KELM: 94.7% of test set prediction errors fall within [0, 50] units, with only three cases exceeding 100 units, indicating strong stability. The model achieves a coefficient of determination (R2) of 0.987 in the training set (RMSE = 28.108, RPD = 8.872) and maintains excellent generalization with R2 = 0.973 in the test set (RMSE = 43.227, RPD = 6.202). Visual analysis confirms that predicted values closely align with actual energy consumption trends, avoiding overfitting while capturing nonlinear dependencies. A key innovation of this study is the introduction of adaptive feature weighting, allowing the model to dynamically assign importance to different input parameters, thereby enhancing high-dimensional data processing. This advancement provides a scalable and efficient approach for optimizing cloud data center energy consumption. Beyond cloud computing, the proposed hybrid framework has broader applications in Internet of Things (IoT) and edge computing, supporting real-time energy management and intelligent resource allocation.
Abstract:This study addresses the challenge of resource scheduling optimization in edge-cloud collaborative computing using deep reinforcement learning (DRL). The proposed DRL-based approach improves task processing efficiency, reduces overall processing time, enhances resource utilization, and effectively controls task migrations. Experimental results demonstrate the superiority of DRL over traditional scheduling algorithms, particularly in managing complex task allocation, dynamic workloads, and multiple resource constraints. Despite its advantages, further improvements are needed to enhance learning efficiency, reduce training time, and address convergence issues. Future research should focus on increasing the algorithm's fault tolerance to handle more complex and uncertain scheduling scenarios, thereby advancing the intelligence and efficiency of edge-cloud computing systems.
Abstract:Cloud computing environments are increasingly vulnerable to security threats such as distributed denial-of-service (DDoS) attacks and SQL injection. Traditional security mechanisms, based on rule matching and feature recognition, struggle to adapt to evolving attack strategies. This paper proposes an adaptive security protection framework leveraging deep learning to construct a multi-layered defense architecture. The proposed system is evaluated in a real-world business environment, achieving a detection accuracy of 97.3%, an average response time of 18 ms, and an availability rate of 99.999%. Experimental results demonstrate that the proposed method significantly enhances detection accuracy, response efficiency, and resource utilization, offering a novel and effective approach to cloud computing security.
Abstract:Traditional security protection methods struggle to address sophisticated attack vectors in large-scale distributed systems, particularly when balancing detection accuracy with data privacy concerns. This paper presents a novel distributed security threat detection system that integrates federated learning with multimodal large language models (LLMs). Our system leverages federated learning to ensure data privacy while employing multimodal LLMs to process heterogeneous data sources including network traffic, system logs, images, and sensor data. Experimental evaluation on a 10TB distributed dataset demonstrates that our approach achieves 96.4% detection accuracy, outperforming traditional baseline models by 4.1 percentage points. The system reduces both false positive and false negative rates by 1.8 and 2.4 percentage points respectively. Performance analysis shows that our system maintains efficient processing capabilities in distributed environments, requiring 180 seconds for model training and 3.8 seconds for threat detection across the distributed network. These results demonstrate significant improvements in detection accuracy and computational efficiency while preserving data privacy, suggesting strong potential for real-world deployment in large-scale security systems.
Abstract:Cloud computing adoption across industries has revolutionized enterprise operations while introducing significant challenges in compliance management. Organizations must continuously meet evolving regulatory requirements such as GDPR and ISO 27001, yet traditional manual review processes have become increasingly inadequate for modern business scales. This paper presents a novel machine learning-based framework for automating cloud computing compliance processes, addressing critical challenges including resource-intensive manual reviews, extended compliance cycles, and delayed risk identification. Our proposed framework integrates multiple machine learning technologies, including BERT-based document processing (94.5% accuracy), One-Class SVM for anomaly detection (88.7% accuracy), and an improved CNN-LSTM architecture for sequential compliance data analysis (90.2% accuracy). Implementation results demonstrate significant improvements: reducing compliance process duration from 7 days to 1.5 days, improving accuracy from 78% to 93%, and decreasing manual effort by 73.3%. A real-world deployment at a major securities firm validated these results, processing 800,000 daily transactions with 94.2% accuracy in risk identification.
Abstract:Solar filaments are one of the most prominent features observed on the Sun, and their evolutions are closely related to various solar activities, such as flares and coronal mass ejections. Real-time automated identification of solar filaments is the most effective approach to managing large volumes of data. Existing models of filament identification are characterized by large parameter sizes and high computational costs, which limit their future applications in highly integrated and intelligent ground-based and space-borne observation devices. Consequently, the design of more lightweight models will facilitate the advancement of intelligent observation equipment. In this study, we introduce Flat U-Net, a novel and highly efficient ultralightweight model that incorporates simplified channel attention (SCA) and channel self-attention (CSA) convolutional blocks for the segmentation of solar filaments in full-disk H$\alpha$ images. Feature information from each network layer is fully extracted to reconstruct interchannel feature representations. Each block effectively optimizes the channel features from the previous layer, significantly reducing parameters. The network architecture presents an elegant flattening, improving its efficiency, and simplifying the overall design. Experimental validation demonstrates that a model composed of pure SCAs achieves a precision of approximately 0.93, with dice similarity coefficient (DSC) and recall rates of 0.76 and 0.64, respectively, significantly outperforming the classical U-Net. Introducing a certain number of CSA blocks improves the DSC and recall rates to 0.82 and 0.74, respectively, which demonstrates a pronounced advantage, particularly concerning model weight size and detection effectiveness. The data set, models, and code are available as open-source resources.
Abstract:Vision Large Language Models (VLLMs) integrate visual data processing, expanding their real-world applications, but also increasing the risk of generating unsafe responses. In response, leading companies have implemented Multi-Layered safety defenses, including alignment training, safety system prompts, and content moderation. However, their effectiveness against sophisticated adversarial attacks remains largely unexplored. In this paper, we propose MultiFaceted Attack, a novel attack framework designed to systematically bypass Multi-Layered Defenses in VLLMs. It comprises three complementary attack facets: Visual Attack that exploits the multimodal nature of VLLMs to inject toxic system prompts through images; Alignment Breaking Attack that manipulates the model's alignment mechanism to prioritize the generation of contrasting responses; and Adversarial Signature that deceives content moderators by strategically placing misleading information at the end of the response. Extensive evaluations on eight commercial VLLMs in a black-box setting demonstrate that MultiFaceted Attack achieves a 61.56% attack success rate, surpassing state-of-the-art methods by at least 42.18%.
Abstract:Ensuring the safety and harmlessness of Large Language Models (LLMs) has become equally critical as their performance in applications. However, existing safety alignment methods typically suffer from safety-performance trade-offs and the susceptibility to jailbreak attacks, primarily due to their reliance on direct refusals for malicious queries. In this paper, we propose STAIR, a novel framework that integrates SafeTy Alignment with Itrospective Reasoning. We enable LLMs to identify safety risks through step-by-step analysis by self-improving chain-of-thought (CoT) reasoning with safety awareness. STAIR first equips the model with a structured reasoning capability and then advances safety alignment via iterative preference optimization on step-level reasoning data generated using our newly proposed Safety-Informed Monte Carlo Tree Search (SI-MCTS). We further train a process reward model on this data to guide test-time searches for improved responses. Extensive experiments show that STAIR effectively mitigates harmful outputs while better preserving helpfulness, compared to instinctive alignment strategies. With test-time scaling, STAIR achieves a safety performance comparable to Claude-3.5 against popular jailbreak attacks. Relevant resources in this work are available at https://github.com/thu-ml/STAIR.
Abstract:Feature modeling, which involves feature representation learning and leveraging, plays an essential role in industrial recommendation systems. However, the data distribution in real-world applications usually follows a highly skewed long-tail pattern due to the popularity bias, which easily leads to over-reliance on ID-based features, such as user/item IDs and ID sequences of interactions. Such over-reliance makes it hard for models to learn features comprehensively, especially for those non-ID meta features, e.g., user/item characteristics. Further, it limits the feature leveraging ability in models, getting less generalized and more susceptible to data noise. Previous studies on feature modeling focus on feature extraction and interaction, hardly noticing the problems brought about by the long-tail data distribution. To achieve better feature representation learning and leveraging on real-world data, we propose a model-agnostic framework AdaF^2M^2, short for Adaptive Feature Modeling with Feature Mask. The feature-mask mechanism helps comprehensive feature learning via multi-forward training with augmented samples, while the adapter applies adaptive weights on features responsive to different user/item states. By arming base models with AdaF^2M^2, we conduct online A/B tests on multiple recommendation scenarios, obtaining +1.37% and +1.89% cumulative improvements on user active days and app duration respectively. Besides, the extended offline experiments on different models show improvements as well. AdaF$^2$M$^2$ has been widely deployed on both retrieval and ranking tasks in multiple applications of Douyin Group, indicating its superior effectiveness and universality.
Abstract:User interests manifest a dynamic pattern within the course of a day, e.g., a user usually favors soft music at 8 a.m. but may turn to ambient music at 10 p.m. To model dynamic interests in a day, hour embedding is widely used in traditional daily-trained industrial recommendation systems. However, its discreteness can cause periodical online patterns and instability in recent streaming recommendation systems. Recently, Interest Clock has achieved remarkable performance in streaming recommendation systems. Nevertheless, it models users' dynamic interests in a coarse-grained manner, merely encoding users' discrete interests of 24 hours from short-term behaviors. In this paper, we propose a fine-grained method for perceiving time information for streaming recommendation systems, named Long-term Interest Clock (LIC). The key idea of LIC is adaptively calculating current user interests by taking into consideration the relevance of long-term behaviors around current time (e.g., 8 a.m.) given a candidate item. LIC consists of two modules: (1) Clock-GSU retrieves a sub-sequence by searching through long-term behaviors, using query information from a candidate item and current time, (2) Clock-ESU employs a time-gap-aware attention mechanism to aggregate sub-sequence with the candidate item. With Clock-GSU and Clock-ESU, LIC is capable of capturing users' dynamic fine-grained interests from long-term behaviors. We conduct online A/B tests, obtaining +0.122% improvements on user active days. Besides, the extended offline experiments show improvements as well. Long-term Interest Clock has been integrated into Douyin Music App's recommendation system.