Abstract:Long-term time series forecasting (LTSF) has been widely applied in finance, traffic prediction, and other domains. Recently, patch-based transformers have emerged as a promising approach, segmenting data into sub-level patches that serve as input tokens. However, existing methods mostly rely on predetermined patch lengths, necessitating expert knowledge and posing challenges in capturing diverse characteristics across various scales. Moreover, time series data exhibit diverse variations and fluctuations across different temporal scales, which traditional approaches struggle to model effectively. In this paper, we propose a dynamic tokenizer with a dynamic sparse learning algorithm to capture diverse receptive fields and sparse patterns of time series data. In order to build hierarchical receptive fields, we develop a multi-scale Transformer model, coupled with multi-scale sequence extraction, capable of capturing multi-resolution features. Additionally, we introduce a group-aware rotary position encoding technique to enhance intra- and inter-group position awareness among representations across different temporal scales. Our proposed model, named DRFormer, is evaluated on various real-world datasets, and experimental results demonstrate its superiority compared to existing methods. Our code is available at: https://github.com/ruixindingECNU/DRFormer.
Abstract:Seeing is believing, however, the underlying mechanism of how human visual perceptions are intertwined with our cognitions is still a mystery. Thanks to the recent advances in both neuroscience and artificial intelligence, we have been able to record the visually evoked brain activities and mimic the visual perception ability through computational approaches. In this paper, we pay attention to visual stimuli reconstruction by reconstructing the observed images based on portably accessible brain signals, i.e., electroencephalography (EEG) data. Since EEG signals are dynamic in the time-series format and are notorious to be noisy, processing and extracting useful information requires more dedicated efforts; In this paper, we propose a comprehensive pipeline, named NeuroImagen, for reconstructing visual stimuli images from EEG signals. Specifically, we incorporate a novel multi-level perceptual information decoding to draw multi-grained outputs from the given EEG data. A latent diffusion model will then leverage the extracted information to reconstruct the high-resolution visual stimuli images. The experimental results have illustrated the effectiveness of image reconstruction and superior quantitative performance of our proposed method.