Abstract:Backdoor attacks embed hidden associations between triggers and targets in deep neural networks (DNNs), causing them to predict the target when a trigger is present while maintaining normal behavior otherwise. Physical backdoor attacks, which use physical objects as triggers, are feasible but lack remote control, temporal stealthiness, flexibility, and mobility. To overcome these limitations, in this work, we propose a new type of backdoor triggers utilizing lasers that feature long-distance transmission and instant-imaging properties. Based on the laser-based backdoor triggers, we present a physical backdoor attack, called LaserGuider, which possesses remote control ability and achieves high temporal stealthiness, flexibility, and mobility. We also introduce a systematic approach to optimize laser parameters for improving attack effectiveness. Our evaluation on traffic sign recognition DNNs, critical in autonomous vehicles, demonstrates that LaserGuider with three different laser-based triggers achieves over 90% attack success rate with negligible impact on normal inputs. Additionally, we release LaserMark, the first dataset of real world traffic signs stamped with physical laser spots, to support further research in backdoor attacks and defenses.
Abstract:In the digital era, blockchain technology, cryptocurrencies, and non-fungible tokens (NFTs) have transformed financial and decentralized systems. However, existing research often neglects the spatiotemporal variations in public sentiment toward these technologies, limiting macro-level insights into their global impact. This study leverages Twitter data to explore public attention and sentiment across 150 countries, analyzing over 150 million geotagged tweets from 2012 to 2022. Sentiment scores were derived using a BERT-based multilingual sentiment model trained on 7.4 billion tweets. The analysis integrates global cryptocurrency regulations and economic indicators from the World Development Indicators database. Results reveal significant global sentiment variations influenced by economic factors, with more developed nations engaging more in discussions, while less developed countries show higher sentiment levels. Geographically weighted regression indicates that GDP-tweet engagement correlation intensifies following Bitcoin price surges. Topic modeling shows that countries within similar economic clusters share discussion trends, while different clusters focus on distinct topics. This study highlights global disparities in sentiment toward decentralized finance, shaped by economic and regional factors, with implications for poverty alleviation, cryptocurrency crime, and sustainable development. The dataset and code are publicly available on GitHub.
Abstract:Large language models (LLMs) like ChatGPT and Gemini have significantly advanced natural language processing, enabling various applications such as chatbots and automated content generation. However, these models can be exploited by malicious individuals who craft toxic prompts to elicit harmful or unethical responses. These individuals often employ jailbreaking techniques to bypass safety mechanisms, highlighting the need for robust toxic prompt detection methods. Existing detection techniques, both blackbox and whitebox, face challenges related to the diversity of toxic prompts, scalability, and computational efficiency. In response, we propose ToxicDetector, a lightweight greybox method designed to efficiently detect toxic prompts in LLMs. ToxicDetector leverages LLMs to create toxic concept prompts, uses embedding vectors to form feature vectors, and employs a Multi-Layer Perceptron (MLP) classifier for prompt classification. Our evaluation on various versions of the LLama models, Gemma-2, and multiple datasets demonstrates that ToxicDetector achieves a high accuracy of 96.39\% and a low false positive rate of 2.00\%, outperforming state-of-the-art methods. Additionally, ToxicDetector's processing time of 0.0780 seconds per prompt makes it highly suitable for real-time applications. ToxicDetector achieves high accuracy, efficiency, and scalability, making it a practical method for toxic prompt detection in LLMs.
Abstract:Long-term time series forecasting (LTSF) has been widely applied in finance, traffic prediction, and other domains. Recently, patch-based transformers have emerged as a promising approach, segmenting data into sub-level patches that serve as input tokens. However, existing methods mostly rely on predetermined patch lengths, necessitating expert knowledge and posing challenges in capturing diverse characteristics across various scales. Moreover, time series data exhibit diverse variations and fluctuations across different temporal scales, which traditional approaches struggle to model effectively. In this paper, we propose a dynamic tokenizer with a dynamic sparse learning algorithm to capture diverse receptive fields and sparse patterns of time series data. In order to build hierarchical receptive fields, we develop a multi-scale Transformer model, coupled with multi-scale sequence extraction, capable of capturing multi-resolution features. Additionally, we introduce a group-aware rotary position encoding technique to enhance intra- and inter-group position awareness among representations across different temporal scales. Our proposed model, named DRFormer, is evaluated on various real-world datasets, and experimental results demonstrate its superiority compared to existing methods. Our code is available at: https://github.com/ruixindingECNU/DRFormer.
Abstract:In this work, we develop a pipeline for historical-psychological text analysis in classical Chinese. Humans have produced texts in various languages for thousands of years; however, most of the computational literature is focused on contemporary languages and corpora. The emerging field of historical psychology relies on computational techniques to extract aspects of psychology from historical corpora using new methods developed in natural language processing (NLP). The present pipeline, called Contextualized Construct Representations (CCR), combines expert knowledge in psychometrics (i.e., psychological surveys) with text representations generated via transformer-based language models to measure psychological constructs such as traditionalism, norm strength, and collectivism in classical Chinese corpora. Considering the scarcity of available data, we propose an indirect supervised contrastive learning approach and build the first Chinese historical psychology corpus (C-HI-PSY) to fine-tune pre-trained models. We evaluate the pipeline to demonstrate its superior performance compared with other approaches. The CCR method outperforms word-embedding-based approaches across all of our tasks and exceeds prompting with GPT-4 in most tasks. Finally, we benchmark the pipeline against objective, external data to further verify its validity.
Abstract:With the prevalence of text-to-image generative models, their safety becomes a critical concern. adversarial testing techniques have been developed to probe whether such models can be prompted to produce Not-Safe-For-Work (NSFW) content. However, existing solutions face several challenges, including low success rate and inefficiency. We introduce Groot, the first automated framework leveraging tree-based semantic transformation for adversarial testing of text-to-image models. Groot employs semantic decomposition and sensitive element drowning strategies in conjunction with LLMs to systematically refine adversarial prompts. Our comprehensive evaluation confirms the efficacy of Groot, which not only exceeds the performance of current state-of-the-art approaches but also achieves a remarkable success rate (93.66%) on leading text-to-image models such as DALL-E 3 and Midjourney.
Abstract:Modeling continuous-time dynamics on irregular time series is critical to account for data evolution and correlations that occur continuously. Traditional methods including recurrent neural networks or Transformer models leverage inductive bias via powerful neural architectures to capture complex patterns. However, due to their discrete characteristic, they have limitations in generalizing to continuous-time data paradigms. Though neural ordinary differential equations (Neural ODEs) and their variants have shown promising results in dealing with irregular time series, they often fail to capture the intricate correlations within these sequences. It is challenging yet demanding to concurrently model the relationship between input data points and capture the dynamic changes of the continuous-time system. To tackle this problem, we propose ContiFormer that extends the relation modeling of vanilla Transformer to the continuous-time domain, which explicitly incorporates the modeling abilities of continuous dynamics of Neural ODEs with the attention mechanism of Transformers. We mathematically characterize the expressive power of ContiFormer and illustrate that, by curated designs of function hypothesis, many Transformer variants specialized in irregular time series modeling can be covered as a special case of ContiFormer. A wide range of experiments on both synthetic and real-world datasets have illustrated the superior modeling capacities and prediction performance of ContiFormer on irregular time series data. The project link is https://seqml.github.io/contiformer/.
Abstract:Self-supervised learning has emerged as a highly effective approach in the fields of natural language processing and computer vision. It is also applicable to brain signals such as electroencephalography (EEG) data, given the abundance of available unlabeled data that exist in a wide spectrum of real-world medical applications ranging from seizure detection to wave analysis. The existing works leveraging self-supervised learning on EEG modeling mainly focus on pretraining upon each individual dataset corresponding to a single downstream task, which cannot leverage the power of abundant data, and they may derive sub-optimal solutions with a lack of generalization. Moreover, these methods rely on end-to-end model learning which is not easy for humans to understand. In this paper, we present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data. The pretrained model cannot only learn universal representations on EEG signals with adaptable performance on various downstream tasks but also provide interpretable outcomes of the useful patterns within the data. To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings. Furthermore, we demonstrate how the learned model exhibits transferable anomaly detection performance and provides valuable interpretability of the acquired patterns via self-supervised learning.
Abstract:Domain adaptation has attracted a great deal of attention in the machine learning community, but it requires access to source data, which often raises concerns about data privacy. We are thus motivated to address these issues and propose a simple yet efficient method. This work treats domain adaptation as an unsupervised clustering problem and trains the target model without access to the source data. Specifically, we propose a loss function called contrast and clustering (CaC), where a positive pair term pulls neighbors belonging to the same class together in the feature space to form clusters, while a negative pair term pushes samples of different classes apart. In addition, extended neighbors are taken into account by querying the nearest neighbor indexes in the memory bank to mine for more valuable negative pairs. Extensive experiments on three common benchmarks, VisDA, Office-Home and Office-31, demonstrate that our method achieves state-of-the-art performance. The code will be made publicly available at https://github.com/yukilulu/CaC.
Abstract:GPS trajectories are the essential foundations for many trajectory-based applications, such as travel time estimation, traffic prediction and trajectory similarity measurement. Most applications require a large amount of high sample rate trajectories to achieve a good performance. However, many real-life trajectories are collected with low sample rate due to energy concern or other constraints.We study the task of trajectory recovery in this paper as a means for increasing the sample rate of low sample trajectories. Currently, most existing works on trajectory recovery follow a sequence-to-sequence diagram, with an encoder to encode a trajectory and a decoder to recover real GPS points in the trajectory. However, these works ignore the topology of road network and only use grid information or raw GPS points as input. Therefore, the encoder model is not able to capture rich spatial information of the GPS points along the trajectory, making the prediction less accurate and lack spatial consistency. In this paper, we propose a road network enhanced transformer-based framework, namely RNTrajRec, for trajectory recovery. RNTrajRec first uses a graph model, namely GridGNN, to learn the embedding features of each road segment. It next develops a spatial-temporal transformer model, namely GPSFormer, to learn rich spatial and temporal features along with a Sub-Graph Generation module to capture the spatial features for each GPS point in the trajectory. It finally forwards the outputs of encoder model into a multi-task decoder model to recover the missing GPS points. Extensive experiments based on three large-scale real-life trajectory datasets confirm the effectiveness of our approach.