Abstract:Autoregressive models have emerged as a powerful approach for visual generation but suffer from slow inference speed due to their sequential token-by-token prediction process. In this paper, we propose a simple yet effective approach for parallelized autoregressive visual generation that improves generation efficiency while preserving the advantages of autoregressive modeling. Our key insight is that parallel generation depends on visual token dependencies-tokens with weak dependencies can be generated in parallel, while strongly dependent adjacent tokens are difficult to generate together, as their independent sampling may lead to inconsistencies. Based on this observation, we develop a parallel generation strategy that generates distant tokens with weak dependencies in parallel while maintaining sequential generation for strongly dependent local tokens. Our approach can be seamlessly integrated into standard autoregressive models without modifying the architecture or tokenizer. Experiments on ImageNet and UCF-101 demonstrate that our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks. We hope this work will inspire future research in efficient visual generation and unified autoregressive modeling. Project page: https://epiphqny.github.io/PAR-project.
Abstract:PolSAR data presents unique challenges due to its rich and complex characteristics. Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used. However, these formats often face issues related to usability, interpretability, and data integrity. Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively. To address these issues, We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy. PolSAM introduces Microwave Vision Data (MVD), a lightweight and interpretable data representation derived from polarimetric decomposition and semantic correlations. We propose two key components: the Feature-Level Fusion Prompt (FFP), which fuses visual tokens from pseudo-colored SAR images and MVD to address modality incompatibility in the frozen SAM encoder, and the Semantic-Level Fusion Prompt (SFP), which refines sparse and dense segmentation prompts using semantic information. Experimental results on the PhySAR-Seg datasets demonstrate that PolSAM significantly outperforms existing SAM-based and multimodal fusion models, improving segmentation accuracy, reducing data storage, and accelerating inference time. The source code and datasets will be made publicly available at \url{https://github.com/XAI4SAR/PolSAM}.
Abstract:The efficacy of video generation models heavily depends on the quality of their training datasets. Most previous video generation models are trained on short video clips, while recently there has been increasing interest in training long video generation models directly on longer videos. However, the lack of such high-quality long videos impedes the advancement of long video generation. To promote research in long video generation, we desire a new dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions. To achieve this, we introduce a new pipeline for selecting high-quality long-take videos and generating temporally dense captions. Specifically, we define a set of metrics to quantitatively assess video quality including scene cuts, dynamic degrees, and semantic-level quality, enabling us to filter high-quality long-take videos from a large amount of source videos. Subsequently, we develop a hierarchical video captioning pipeline to annotate long videos with temporally-dense captions. With this pipeline, we curate the first long-take video dataset, LVD-2M, comprising 2 million long-take videos, each covering more than 10 seconds and annotated with temporally dense captions. We further validate the effectiveness of LVD-2M by fine-tuning video generation models to generate long videos with dynamic motions. We believe our work will significantly contribute to future research in long video generation.
Abstract:We study the convergence rate of first-order methods for rectangular matrix factorization, which is a canonical nonconvex optimization problem. Specifically, given a rank-$r$ matrix $\mathbf{A}\in\mathbb{R}^{m\times n}$, we prove that gradient descent (GD) can find a pair of $\epsilon$-optimal solutions $\mathbf{X}_T\in\mathbb{R}^{m\times d}$ and $\mathbf{Y}_T\in\mathbb{R}^{n\times d}$, where $d\geq r$, satisfying $\lVert\mathbf{X}_T\mathbf{Y}_T^\top-\mathbf{A}\rVert_\mathrm{F}\leq\epsilon\lVert\mathbf{A}\rVert_\mathrm{F}$ in $T=O(\kappa^2\log\frac{1}{\epsilon})$ iterations with high probability, where $\kappa$ denotes the condition number of $\mathbf{A}$. Furthermore, we prove that Nesterov's accelerated gradient (NAG) attains an iteration complexity of $O(\kappa\log\frac{1}{\epsilon})$, which is the best-known bound of first-order methods for rectangular matrix factorization. Different from small balanced random initialization in the existing literature, we adopt an unbalanced initialization, where $\mathbf{X}_0$ is large and $\mathbf{Y}_0$ is $0$. Moreover, our initialization and analysis can be further extended to linear neural networks, where we prove that NAG can also attain an accelerated linear convergence rate. In particular, we only require the width of the network to be greater than or equal to the rank of the output label matrix. In contrast, previous results achieving the same rate require excessive widths that additionally depend on the condition number and the rank of the input data matrix.
Abstract:Multimodal Large Language Models (MLLMs) are advancing the ability to reason about complex sports scenarios by integrating textual and visual information. To comprehensively evaluate their capabilities, we introduce SPORTU, a benchmark designed to assess MLLMs across multi-level sports reasoning tasks. SPORTU comprises two key components: SPORTU-text, featuring 900 multiple-choice questions with human-annotated explanations for rule comprehension and strategy understanding. This component focuses on testing models' ability to reason about sports solely through question-answering (QA), without requiring visual inputs; SPORTU-video, consisting of 1,701 slow-motion video clips across 7 different sports and 12,048 QA pairs, designed to assess multi-level reasoning, from simple sports recognition to complex tasks like foul detection and rule application. We evaluate four prevalent LLMs mainly utilizing few-shot learning paradigms supplemented by chain-of-thought (CoT) prompting on the SPORTU-text part. We evaluate four LLMs using few-shot learning and chain-of-thought (CoT) prompting on SPORTU-text. GPT-4o achieves the highest accuracy of 71%, but still falls short of human-level performance, highlighting room for improvement in rule comprehension and reasoning. The evaluation for the SPORTU-video part includes 7 proprietary and 6 open-source MLLMs. Experiments show that models fall short on hard tasks that require deep reasoning and rule-based understanding. Claude-3.5-Sonnet performs the best with only 52.6% accuracy on the hard task, showing large room for improvement. We hope that SPORTU will serve as a critical step toward evaluating models' capabilities in sports understanding and reasoning.
Abstract:It is desirable but challenging to generate content-rich long videos in the scale of minutes. Autoregressive large language models (LLMs) have achieved great success in generating coherent and long sequences of tokens in the domain of natural language processing, while the exploration of autoregressive LLMs for video generation is limited to generating short videos of several seconds. In this work, we conduct a deep analysis of the challenges that prevent autoregressive LLM-based video generators from generating long videos. Based on the observations and analysis, we propose Loong, a new autoregressive LLM-based video generator that can generate minute-long videos. Specifically, we model the text tokens and video tokens as a unified sequence for autoregressive LLMs and train the model from scratch. We propose progressive short-to-long training with a loss re-weighting scheme to mitigate the loss imbalance problem for long video training. We further investigate inference strategies, including video token re-encoding and sampling strategies, to diminish error accumulation during inference. Our proposed Loong can be trained on 10-second videos and be extended to generate minute-level long videos conditioned on text prompts, as demonstrated by the results. More samples are available at: https://epiphqny.github.io/Loong-video.
Abstract:Image classification models often demonstrate unstable performance in real-world applications due to variations in image information, driven by differing visual perspectives of subject objects and lighting discrepancies. To mitigate these challenges, existing studies commonly incorporate additional modal information matching the visual data to regularize the model's learning process, enabling the extraction of high-quality visual features from complex image regions. Specifically, in the realm of multimodal learning, cross-modal alignment is recognized as an effective strategy, harmonizing different modal information by learning a domain-consistent latent feature space for visual and semantic features. However, this approach may face limitations due to the heterogeneity between multimodal information, such as differences in feature distribution and structure. To address this issue, we introduce a Multimodal Alignment and Reconstruction Network (MARNet), designed to enhance the model's resistance to visual noise. Importantly, MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains. Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model. It is a plug-and-play framework that can be rapidly integrated into various image classification frameworks, boosting model performance.
Abstract:Non-contrast CT (NCCT) imaging may reduce image contrast and anatomical visibility, potentially increasing diagnostic uncertainty. In contrast, contrast-enhanced CT (CECT) facilitates the observation of regions of interest (ROI). Leading generative models, especially the conditional diffusion model, demonstrate remarkable capabilities in medical image modality transformation. Typical conditional diffusion models commonly generate images with guidance of segmentation labels for medical modal transformation. Limited access to authentic guidance and its low cardinality can pose challenges to the practical clinical application of conditional diffusion models. To achieve an equilibrium of generative quality and clinical practices, we propose a novel Syncretic generative model based on the latent diffusion model for medical image translation (S$^2$LDM), which can realize high-fidelity reconstruction without demand of additional condition during inference. S$^2$LDM enhances the similarity in distinct modal images via syncretic encoding and diffusing, promoting amalgamated information in the latent space and generating medical images with more details in contrast-enhanced regions. However, syncretic latent spaces in the frequency domain tend to favor lower frequencies, commonly locate in identical anatomic structures. Thus, S$^2$LDM applies adaptive similarity loss and dynamic similarity to guide the generation and supplements the shortfall in high-frequency details throughout the training process. Quantitative experiments confirm the effectiveness of our approach in medical image translation. Our code will release lately.
Abstract:Recent integration of Natural Language Processing (NLP) and multimodal models has advanced the field of sports analytics. This survey presents a comprehensive review of the datasets and applications driving these innovations post-2020. We overviewed and categorized datasets into three primary types: language-based, multimodal, and convertible datasets. Language-based and multimodal datasets are for tasks involving text or multimodality (e.g., text, video, audio), respectively. Convertible datasets, initially single-modal (video), can be enriched with additional annotations, such as explanations of actions and video descriptions, to become multimodal, offering future potential for richer and more diverse applications. Our study highlights the contributions of these datasets to various applications, from improving fan experiences to supporting tactical analysis and medical diagnostics. We also discuss the challenges and future directions in dataset development, emphasizing the need for diverse, high-quality data to support real-time processing and personalized user experiences. This survey provides a foundational resource for researchers and practitioners aiming to leverage NLP and multimodal models in sports, offering insights into current trends and future opportunities in the field.
Abstract:Most existing theoretical investigations of the accuracy of diffusion models, albeit significant, assume the score function has been approximated to a certain accuracy, and then use this a priori bound to control the error of generation. This article instead provides a first quantitative understanding of the whole generation process, i.e., both training and sampling. More precisely, it conducts a non-asymptotic convergence analysis of denoising score matching under gradient descent. In addition, a refined sampling error analysis for variance exploding models is also provided. The combination of these two results yields a full error analysis, which elucidates (again, but this time theoretically) how to design the training and sampling processes for effective generation. For instance, our theory implies a preference toward noise distribution and loss weighting that qualitatively agree with the ones used in [Karras et al. 2022]. It also provides some perspectives on why the time and variance schedule used in [Karras et al. 2022] could be better tuned than the pioneering version in [Song et al. 2020].