Abstract:Autoregressive visual generation models typically rely on tokenizers to compress images into tokens that can be predicted sequentially. A fundamental dilemma exists in token representation: discrete tokens enable straightforward modeling with standard cross-entropy loss, but suffer from information loss and tokenizer training instability; continuous tokens better preserve visual details, but require complex distribution modeling, complicating the generation pipeline. In this paper, we propose TokenBridge, which bridges this gap by maintaining the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens. To achieve this, we decouple discretization from the tokenizer training process through post-training quantization that directly obtains discrete tokens from continuous representations. Specifically, we introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism that efficiently model the resulting large token space. Extensive experiments show that our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction. This work demonstrates that bridging discrete and continuous paradigms can effectively harness the strengths of both approaches, providing a promising direction for high-quality visual generation with simple autoregressive modeling. Project page: https://yuqingwang1029.github.io/TokenBridge.
Abstract:A novel local interaction control method (LICM) is proposed in this paper to realize the formation control of multi-agent system (MAS). A local interaction leader follower (LILF) structure is provided by coupling the advantages of information consensus and leader follower frame, the agents can obtain the state information of the leader by interacting with their neighbours, which will reduce the communication overhead of the system and the dependence on a single node of the topology. In addition, the artificial potential field (APF) method is introduced to achieve obstacle avoidance and collision avoidance between agents. Inspired by the stress response of animals, a stress response mechanism-artificial potential field (SRM-APF) is proposed, which will be triggered when the local minimum problem of APF occurs. Ultimately, the simulation experiments of three formation shapes, including triangular formation, square formation and hexagonal formation, validate the effectiveness of the proposed method.
Abstract:Existing polygonal surface reconstruction methods heavily depend on input completeness and struggle with incomplete point clouds. We argue that while current point cloud completion techniques may recover missing points, they are not optimized for polygonal surface reconstruction, where the parametric representation of underlying surfaces remains overlooked. To address this gap, we introduce parametric completion, a novel paradigm for point cloud completion, which recovers parametric primitives instead of individual points to convey high-level geometric structures. Our presented approach, PaCo, enables high-quality polygonal surface reconstruction by leveraging plane proxies that encapsulate both plane parameters and inlier points, proving particularly effective in challenging scenarios with highly incomplete data. Comprehensive evaluations of our approach on the ABC dataset establish its effectiveness with superior performance and set a new standard for polygonal surface reconstruction from incomplete data. Project page: https://parametric-completion.github.io.
Abstract:With the rapid expansion of cloud computing infrastructure, energy consumption has become a critical challenge, driving the need for accurate and efficient prediction models. This study proposes a novel Vector Weighted Average Kernel Extreme Learning Machine (VWAA-KELM) model to enhance energy consumption prediction in cloud computing environments. By integrating a vector weighted average algorithm (VWAA) with kernel extreme learning machine (KELM), the proposed model dynamically adjusts feature weights and optimizes kernel functions, significantly improving prediction accuracy and generalization. Experimental results demonstrate the superior performance of VWAA-KELM: 94.7% of test set prediction errors fall within [0, 50] units, with only three cases exceeding 100 units, indicating strong stability. The model achieves a coefficient of determination (R2) of 0.987 in the training set (RMSE = 28.108, RPD = 8.872) and maintains excellent generalization with R2 = 0.973 in the test set (RMSE = 43.227, RPD = 6.202). Visual analysis confirms that predicted values closely align with actual energy consumption trends, avoiding overfitting while capturing nonlinear dependencies. A key innovation of this study is the introduction of adaptive feature weighting, allowing the model to dynamically assign importance to different input parameters, thereby enhancing high-dimensional data processing. This advancement provides a scalable and efficient approach for optimizing cloud data center energy consumption. Beyond cloud computing, the proposed hybrid framework has broader applications in Internet of Things (IoT) and edge computing, supporting real-time energy management and intelligent resource allocation.
Abstract:This study investigates event-related desynchronization (ERD) phenomena during motor imagery and actual movement. Using sLORETA software, we analyzed the cortical current source density distributions in Mu and Beta frequency bands for 33 subjects during rest, motor imagery, and actual movement conditions. The results were normalized for analysis. Using sLORETA's statistical tools, paired t-tests were conducted to compare the normalized current source density results between rest and motor imagery, rest and actual movement, and motor imagery and actual movement conditions in both frequency bands. The findings revealed: In both Mu and Beta frequency bands, during motor imagery, significant ERD (P<0.01) was observed in the salience network, supplementary motor area, primary motor area, premotor cortex, primary somatosensory cortex, and parietofrontal mirror neuron system. During actual movement, significant ERD (P<0.05) was observed in the primary somatosensory cortex, primary motor area, and parietofrontal mirror neuron system in both frequency bands. Comparing motor imagery to actual movement, the current source density in the primary somatosensory cortex and parietofrontal mirror neuron system was higher during motor imagery, though this difference was not statistically significant (P>0.05). This paper analyzes the factors contributing to these statistical results and proposes preliminary solutions.
Abstract:This study addresses the challenge of resource scheduling optimization in edge-cloud collaborative computing using deep reinforcement learning (DRL). The proposed DRL-based approach improves task processing efficiency, reduces overall processing time, enhances resource utilization, and effectively controls task migrations. Experimental results demonstrate the superiority of DRL over traditional scheduling algorithms, particularly in managing complex task allocation, dynamic workloads, and multiple resource constraints. Despite its advantages, further improvements are needed to enhance learning efficiency, reduce training time, and address convergence issues. Future research should focus on increasing the algorithm's fault tolerance to handle more complex and uncertain scheduling scenarios, thereby advancing the intelligence and efficiency of edge-cloud computing systems.
Abstract:Traditional security protection methods struggle to address sophisticated attack vectors in large-scale distributed systems, particularly when balancing detection accuracy with data privacy concerns. This paper presents a novel distributed security threat detection system that integrates federated learning with multimodal large language models (LLMs). Our system leverages federated learning to ensure data privacy while employing multimodal LLMs to process heterogeneous data sources including network traffic, system logs, images, and sensor data. Experimental evaluation on a 10TB distributed dataset demonstrates that our approach achieves 96.4% detection accuracy, outperforming traditional baseline models by 4.1 percentage points. The system reduces both false positive and false negative rates by 1.8 and 2.4 percentage points respectively. Performance analysis shows that our system maintains efficient processing capabilities in distributed environments, requiring 180 seconds for model training and 3.8 seconds for threat detection across the distributed network. These results demonstrate significant improvements in detection accuracy and computational efficiency while preserving data privacy, suggesting strong potential for real-world deployment in large-scale security systems.
Abstract:Cloud computing environments are increasingly vulnerable to security threats such as distributed denial-of-service (DDoS) attacks and SQL injection. Traditional security mechanisms, based on rule matching and feature recognition, struggle to adapt to evolving attack strategies. This paper proposes an adaptive security protection framework leveraging deep learning to construct a multi-layered defense architecture. The proposed system is evaluated in a real-world business environment, achieving a detection accuracy of 97.3%, an average response time of 18 ms, and an availability rate of 99.999%. Experimental results demonstrate that the proposed method significantly enhances detection accuracy, response efficiency, and resource utilization, offering a novel and effective approach to cloud computing security.
Abstract:Cloud computing adoption across industries has revolutionized enterprise operations while introducing significant challenges in compliance management. Organizations must continuously meet evolving regulatory requirements such as GDPR and ISO 27001, yet traditional manual review processes have become increasingly inadequate for modern business scales. This paper presents a novel machine learning-based framework for automating cloud computing compliance processes, addressing critical challenges including resource-intensive manual reviews, extended compliance cycles, and delayed risk identification. Our proposed framework integrates multiple machine learning technologies, including BERT-based document processing (94.5% accuracy), One-Class SVM for anomaly detection (88.7% accuracy), and an improved CNN-LSTM architecture for sequential compliance data analysis (90.2% accuracy). Implementation results demonstrate significant improvements: reducing compliance process duration from 7 days to 1.5 days, improving accuracy from 78% to 93%, and decreasing manual effort by 73.3%. A real-world deployment at a major securities firm validated these results, processing 800,000 daily transactions with 94.2% accuracy in risk identification.
Abstract:Autoregressive models have emerged as a powerful approach for visual generation but suffer from slow inference speed due to their sequential token-by-token prediction process. In this paper, we propose a simple yet effective approach for parallelized autoregressive visual generation that improves generation efficiency while preserving the advantages of autoregressive modeling. Our key insight is that parallel generation depends on visual token dependencies-tokens with weak dependencies can be generated in parallel, while strongly dependent adjacent tokens are difficult to generate together, as their independent sampling may lead to inconsistencies. Based on this observation, we develop a parallel generation strategy that generates distant tokens with weak dependencies in parallel while maintaining sequential generation for strongly dependent local tokens. Our approach can be seamlessly integrated into standard autoregressive models without modifying the architecture or tokenizer. Experiments on ImageNet and UCF-101 demonstrate that our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks. We hope this work will inspire future research in efficient visual generation and unified autoregressive modeling. Project page: https://epiphqny.github.io/PAR-project.