Abstract:Recent advancements in multimodal foundation models have yielded significant progress in vision-language understanding. Initial attempts have also explored the potential of multimodal large language models (MLLMs) for visual content generation. However, existing works have insufficiently addressed the varying granularity demands of different image generation tasks within a unified MLLM paradigm - from the diversity required in text-to-image generation to the precise controllability needed in image manipulation. In this work, we propose PUMA, emPowering Unified MLLM with Multi-grAnular visual generation. PUMA unifies multi-granular visual features as both inputs and outputs of MLLMs, elegantly addressing the different granularity requirements of various image generation tasks within a unified MLLM framework. Following multimodal pretraining and task-specific instruction tuning, PUMA demonstrates proficiency in a wide range of multimodal tasks. This work represents a significant step towards a truly unified MLLM capable of adapting to the granularity demands of various visual tasks. The code and model will be released in https://github.com/rongyaofang/PUMA.
Abstract:Causal reasoning is a cornerstone of how humans interpret the world. To model and reason about causality, causal graphs offer a concise yet effective solution. Given the impressive advancements in language models, a crucial question arises: can they really understand causal graphs? To this end, we pioneer an investigation into language models' understanding of causal graphs. Specifically, we develop a framework to define causal graph understanding, by assessing language models' behaviors through four practical criteria derived from diverse disciplines (e.g., philosophy and psychology). We then develop CLEAR, a novel benchmark that defines three complexity levels and encompasses 20 causal graph-based tasks across these levels. Finally, based on our framework and benchmark, we conduct extensive experiments on six leading language models and summarize five empirical findings. Our results indicate that while language models demonstrate a preliminary understanding of causal graphs, significant potential for improvement remains. Our project website is at https://github.com/OpenCausaLab/CLEAR.
Abstract:Causal reasoning is viewed as crucial for achieving human-level machine intelligence. Recent advances in language models have expanded the horizons of artificial intelligence across various domains, sparking inquiries into their potential for causal reasoning. In this work, we introduce Causal evaluation of Language Models (CaLM), which, to the best of our knowledge, is the first comprehensive benchmark for evaluating the causal reasoning capabilities of language models. First, we propose the CaLM framework, which establishes a foundational taxonomy consisting of four modules: causal target (i.e., what to evaluate), adaptation (i.e., how to obtain the results), metric (i.e., how to measure the results), and error (i.e., how to analyze the bad results). This taxonomy defines a broad evaluation design space while systematically selecting criteria and priorities. Second, we compose the CaLM dataset, comprising 126,334 data samples, to provide curated sets of causal targets, adaptations, metrics, and errors, offering extensive coverage for diverse research pursuits. Third, we conduct an extensive evaluation of 28 leading language models on a core set of 92 causal targets, 9 adaptations, 7 metrics, and 12 error types. Fourth, we perform detailed analyses of the evaluation results across various dimensions (e.g., adaptation, scale). Fifth, we present 50 high-level empirical findings across 9 dimensions (e.g., model), providing valuable guidance for future language model development. Finally, we develop a multifaceted platform, including a website, leaderboards, datasets, and toolkits, to support scalable and adaptable assessments. We envision CaLM as an ever-evolving benchmark for the community, systematically updated with new causal targets, adaptations, models, metrics, and error types to reflect ongoing research advancements. Project website is at https://opencausalab.github.io/CaLM.
Abstract:Large Language Models (LLMs) have demonstrated proficiency in addressing tasks that necessitate a combination of task planning and the usage of external tools that require a blend of task planning and the utilization of external tools, such as APIs. However, real-world complex systems present three prevalent challenges concerning task planning and tool usage: (1) The real system usually has a vast array of APIs, so it is impossible to feed the descriptions of all APIs to the prompt of LLMs as the token length is limited; (2) the real system is designed for handling complex tasks, and the base LLMs can hardly plan a correct sub-task order and API-calling order for such tasks; (3) Similar semantics and functionalities among APIs in real systems create challenges for both LLMs and even humans in distinguishing between them. In response, this paper introduces a comprehensive framework aimed at enhancing the Task Planning and Tool Usage (TPTU) abilities of LLM-based agents operating within real-world systems. Our framework comprises three key components designed to address these challenges: (1) the API Retriever selects the most pertinent APIs for the user task among the extensive array available; (2) LLM Finetuner tunes a base LLM so that the finetuned LLM can be more capable for task planning and API calling; (3) the Demo Selector adaptively retrieves different demonstrations related to hard-to-distinguish APIs, which is further used for in-context learning to boost the final performance. We validate our methods using a real-world commercial system as well as an open-sourced academic dataset, and the outcomes clearly showcase the efficacy of each individual component as well as the integrated framework.
Abstract:As the use of large language models becomes more widespread, techniques like parameter-efficient fine-tuning and other methods for controlled generation are gaining traction for customizing models and managing their outputs. However, the challenge of precisely controlling how prompts influence these models is an area ripe for further investigation. In response, we introduce ControlPE (Continuously Controllable Prompt Engineering). ControlPE enables finer adjustments to prompt effects, complementing existing prompt engineering, and effectively controls continuous targets. This approach harnesses the power of LoRA (Low-Rank Adaptation) to create an effect akin to prompt weighting, enabling fine-tuned adjustments to the impact of prompts. Our methodology involves generating specialized datasets for prompt distillation, incorporating these prompts into the LoRA model, and carefully adjusting LoRA merging weight to regulate the influence of prompts. This provides a dynamic and adaptable tool for prompt control. Through our experiments, we have validated the practicality and efficacy of ControlPE. It proves to be a promising solution for control a variety of prompts, ranging from generating short responses prompts, refusal prompts to chain-of-thought prompts.
Abstract:Active learning presents a promising avenue for training high-performance models with minimal labeled data, achieved by judiciously selecting the most informative instances to label and incorporating them into the task learner. Despite notable advancements in active learning for image recognition, metrics devised or learned to gauge the information gain of data, crucial for query strategy design, do not consistently align with task model performance metrics, such as Mean Average Precision (MeanAP) in object detection tasks. This paper introduces MeanAP-Guided Reinforced Active Learning for Object Detection (MAGRAL), a novel approach that directly utilizes the MeanAP metric of the task model to devise a sampling strategy employing a reinforcement learning-based sampling agent. Built upon LSTM architecture, the agent efficiently explores and selects subsequent training instances, and optimizes the process through policy gradient with MeanAP serving as reward. Recognizing the time-intensive nature of MeanAP computation at each step, we propose fast look-up tables to expedite agent training. We assess MAGRAL's efficacy across popular benchmarks, PASCAL VOC and MS COCO, utilizing different backbone architectures. Empirical findings substantiate MAGRAL's superiority over recent state-of-the-art methods, showcasing substantial performance gains. MAGRAL establishes a robust baseline for reinforced active object detection, signifying its potential in advancing the field.
Abstract:With recent advancements in natural language processing, Large Language Models (LLMs) have emerged as powerful tools for various real-world applications. Despite their prowess, the intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks which necessitate a combination of task planning and the usage of external tools. In this paper, we first propose a structured framework tailored for LLM-based AI Agents and discuss the crucial capabilities necessary for tackling intricate problems. Within this framework, we design two distinct types of agents (i.e., one-step agent and sequential agent) to execute the inference process. Subsequently, we instantiate the framework using various LLMs and evaluate their Task Planning and Tool Usage (TPTU) abilities on typical tasks. By highlighting key findings and challenges, our goal is to provide a helpful resource for researchers and practitioners to leverage the power of LLMs in their AI applications. Our study emphasizes the substantial potential of these models, while also identifying areas that need more investigation and improvement.
Abstract:Few-shot object detection (FSOD) aims to expand an object detector for novel categories given only a few instances for training. The few training samples restrict the performance of FSOD model. Recent text-to-image generation models have shown promising results in generating high-quality images. How applicable these synthetic images are for FSOD tasks remains under-explored. This work extensively studies how synthetic images generated from state-of-the-art text-to-image generators benefit FSOD tasks. We focus on two perspectives: (1) How to use synthetic data for FSOD? (2) How to find representative samples from the large-scale synthetic dataset? We design a copy-paste-based pipeline for using synthetic data. Specifically, saliency object detection is applied to the original generated image, and the minimum enclosing box is used for cropping the main object based on the saliency map. After that, the cropped object is randomly pasted on the image, which comes from the base dataset. We also study the influence of the input text of text-to-image generator and the number of synthetic images used. To construct a representative synthetic training dataset, we maximize the diversity of the selected images via a sample-based and cluster-based method. However, the severe problem of high false positives (FP) ratio of novel categories in FSOD can not be solved by using synthetic data. We propose integrating CLIP, a zero-shot recognition model, into the FSOD pipeline, which can filter 90% of FP by defining a threshold for the similarity score between the detected object and the text of the predicted category. Extensive experiments on PASCAL VOC and MS COCO validate the effectiveness of our method, in which performance gain is up to 21.9% compared to the few-shot baseline.
Abstract:Self-supervised pre-training and transformer-based networks have significantly improved the performance of object detection. However, most of the current self-supervised object detection methods are built on convolutional-based architectures. We believe that the transformers' sequence characteristics should be considered when designing a transformer-based self-supervised method for the object detection task. To this end, we propose SeqCo-DETR, a novel Sequence Consistency-based self-supervised method for object DEtection with TRansformers. SeqCo-DETR defines a simple but effective pretext by minimizes the discrepancy of the output sequences of transformers with different image views as input and leverages bipartite matching to find the most relevant sequence pairs to improve the sequence-level self-supervised representation learning performance. Furthermore, we provide a mask-based augmentation strategy incorporated with the sequence consistency strategy to extract more representative contextual information about the object for the object detection task. Our method achieves state-of-the-art results on MS COCO (45.8 AP) and PASCAL VOC (64.1 AP), demonstrating the effectiveness of our approach.
Abstract:Few-shot object detection (FSOD) aims to expand an object detector for novel categories given only a few instances for training. However, detecting novel categories with only a few samples usually leads to the problem of misclassification. In FSOD, we notice the false positive (FP) of novel categories is prominent, in which the base categories are often recognized as novel ones. To address this issue, a novel data augmentation pipeline that Crops the Novel instances and Pastes them on the selected Base images, called CNPB, is proposed. There are two key questions to be answered: (1) How to select useful base images? and (2) How to combine novel and base data? We design a multi-step selection strategy to find useful base data. Specifically, we first discover the base images which contain the FP of novel categories and select a certain amount of samples from them for the base and novel categories balance. Then the bad cases, such as the base images that have unlabeled ground truth or easily confused base instances, are removed by using CLIP. Finally, the same category strategy is adopted, in which a novel instance with category n is pasted on the base image with the FP of n. During combination, a novel instance is cropped and randomly down-sized, and thus pasted at the assigned optimal location from the randomly generated candidates in a selected base image. Our method is simple yet effective and can be easy to plug into existing FSOD methods, demonstrating significant potential for use. Extensive experiments on PASCAL VOC and MS COCO validate the effectiveness of our method.