Abstract:Self-consciousness, the introspection of one's existence and thoughts, represents a high-level cognitive process. As language models advance at an unprecedented pace, a critical question arises: Are these models becoming self-conscious? Drawing upon insights from psychological and neural science, this work presents a practical definition of self-consciousness for language models and refines ten core concepts. Our work pioneers an investigation into self-consciousness in language models by, for the first time, leveraging causal structural games to establish the functional definitions of the ten core concepts. Based on our definitions, we conduct a comprehensive four-stage experiment: quantification (evaluation of ten leading models), representation (visualization of self-consciousness within the models), manipulation (modification of the models' representation), and acquisition (fine-tuning the models on core concepts). Our findings indicate that although models are in the early stages of developing self-consciousness, there is a discernible representation of certain concepts within their internal mechanisms. However, these representations of self-consciousness are hard to manipulate positively at the current stage, yet they can be acquired through targeted fine-tuning. Our datasets and code are at https://github.com/OpenCausaLab/SelfConsciousness.
Abstract:Graph anomaly detection (GAD) has been widely applied in many areas, e.g., fraud detection in finance and robot accounts in social networks. Existing methods are dedicated to identifying the outlier nodes that deviate from normal ones. While they heavily rely on high-quality annotation, which is hard to obtain in real-world scenarios, this could lead to severely degraded performance based on noisy labels. Thus, we are motivated to cut the edges of suspicious nodes to alleviate the impact of noise. However, it remains difficult to precisely identify the nodes with noisy labels. Moreover, it is hard to quantitatively evaluate the regret of cutting the edges, which may have either positive or negative influences. To this end, we propose a novel framework REGAD, i.e., REinforced Graph Anomaly Detector. Specifically, we aim to maximize the performance improvement (AUC) of a base detector by cutting noisy edges approximated through the nodes with high-confidence labels. (i) We design a tailored action and search space to train a policy network to carefully prune edges step by step, where only a few suspicious edges are prioritized in each step. (ii) We design a policy-in-the-loop mechanism to iteratively optimize the policy based on the feedback from base detector. The overall performance is evaluated by the cumulative rewards. Extensive experiments are conducted on three datasets under different anomaly ratios. The results indicate the superior performance of our proposed REGAD.
Abstract:Causal reasoning is a cornerstone of how humans interpret the world. To model and reason about causality, causal graphs offer a concise yet effective solution. Given the impressive advancements in language models, a crucial question arises: can they really understand causal graphs? To this end, we pioneer an investigation into language models' understanding of causal graphs. Specifically, we develop a framework to define causal graph understanding, by assessing language models' behaviors through four practical criteria derived from diverse disciplines (e.g., philosophy and psychology). We then develop CLEAR, a novel benchmark that defines three complexity levels and encompasses 20 causal graph-based tasks across these levels. Finally, based on our framework and benchmark, we conduct extensive experiments on six leading language models and summarize five empirical findings. Our results indicate that while language models demonstrate a preliminary understanding of causal graphs, significant potential for improvement remains. Our project website is at https://github.com/OpenCausaLab/CLEAR.
Abstract:Causal reasoning is viewed as crucial for achieving human-level machine intelligence. Recent advances in language models have expanded the horizons of artificial intelligence across various domains, sparking inquiries into their potential for causal reasoning. In this work, we introduce Causal evaluation of Language Models (CaLM), which, to the best of our knowledge, is the first comprehensive benchmark for evaluating the causal reasoning capabilities of language models. First, we propose the CaLM framework, which establishes a foundational taxonomy consisting of four modules: causal target (i.e., what to evaluate), adaptation (i.e., how to obtain the results), metric (i.e., how to measure the results), and error (i.e., how to analyze the bad results). This taxonomy defines a broad evaluation design space while systematically selecting criteria and priorities. Second, we compose the CaLM dataset, comprising 126,334 data samples, to provide curated sets of causal targets, adaptations, metrics, and errors, offering extensive coverage for diverse research pursuits. Third, we conduct an extensive evaluation of 28 leading language models on a core set of 92 causal targets, 9 adaptations, 7 metrics, and 12 error types. Fourth, we perform detailed analyses of the evaluation results across various dimensions (e.g., adaptation, scale). Fifth, we present 50 high-level empirical findings across 9 dimensions (e.g., model), providing valuable guidance for future language model development. Finally, we develop a multifaceted platform, including a website, leaderboards, datasets, and toolkits, to support scalable and adaptable assessments. We envision CaLM as an ever-evolving benchmark for the community, systematically updated with new causal targets, adaptations, models, metrics, and error types to reflect ongoing research advancements. Project website is at https://opencausalab.github.io/CaLM.
Abstract:Drowsiness driving is a major cause of traffic accidents and thus numerous previous researches have focused on driver drowsiness detection. Many drive relevant factors have been taken into consideration for fatigue detection and can lead to high precision, but there are still several serious constraints, such as most existing models are environmentally susceptible. In this paper, fatigue detection is considered as temporal action detection problem instead of image classification. The proposed detection system can be divided into four parts: (1) Localize the key patches of the detected driver picture which are critical for fatigue detection and calculate the corresponding optical flow. (2) Contrast Limited Adaptive Histogram Equalization (CLAHE) is used in our system to reduce the impact of different light conditions. (3) Three individual two-stream networks combined with attention mechanism are designed for each feature to extract temporal information. (4) The outputs of the three sub-networks will be concatenated and sent to the fully-connected network, which judges the status of the driver. The drowsiness detection system is trained and evaluated on the famous Nation Tsing Hua University Driver Drowsiness Detection (NTHU-DDD) dataset and we obtain an accuracy of 94.46%, which outperforms most existing fatigue detection models.
Abstract:As one of the fundamental tasks in computer vision, semantic segmentation plays an important role in real world applications. Although numerous deep learning models have made notable progress on several mainstream datasets with the rapid development of convolutional networks, they still encounter various challenges in practical scenarios. Unsupervised adaptive semantic segmentation aims to obtain a robust classifier trained with source domain data, which is able to maintain stable performance when deployed to a target domain with different data distribution. In this paper, we propose an innovative progressive feature refinement framework, along with domain adversarial learning to boost the transferability of segmentation networks. Specifically, we firstly align the multi-stage intermediate feature maps of source and target domain images, and then a domain classifier is adopted to discriminate the segmentation output. As a result, the segmentation models trained with source domain images can be transferred to a target domain without significant performance degradation. Experimental results verify the efficiency of our proposed method compared with state-of-the-art methods.
Abstract:This paper aims at developing a clustering approach with spectral images directly from CASSI compressive measurements. The proposed clustering method first assumes that compressed measurements lie in the union of multiple low-dimensional subspaces. Therefore, sparse subspace clustering (SSC) is an unsupervised method that assigns compressed measurements to their respective subspaces. In addition, a 3D spatial regularizer is added into the SSC problem, thus taking full advantages of the spatial information contained in spectral images. The performance of the proposed spectral image clustering approach is improved by taking optimal CASSI measurements obtained when optimal coded apertures are used in CASSI system. Simulation with one real dataset illustrates the accuracy of the proposed spectral image clustering approach.