Abstract:Distributed attention is a fundamental problem for scaling context window for Large Language Models (LLMs). The state-of-the-art method, Ring-Attention, suffers from scalability limitations due to its excessive communication traffic. This paper proposes a new distributed attention algorithm, Mesh-Attention, by rethinking the design space of distributed attention with a new matrix-based model. Our method assigns a two-dimensional tile -- rather than one-dimensional row or column -- of computation blocks to each GPU to achieve higher efficiency through lower communication-computation (CommCom) ratio. The general approach covers Ring-Attention as a special case, and allows the tuning of CommCom ratio with different tile shapes. Importantly, we propose a greedy algorithm that can efficiently search the scheduling space within the tile with restrictions that ensure efficient communication among GPUs. The theoretical analysis shows that Mesh-Attention leads to a much lower communication complexity and exhibits good scalability comparing to other current algorithms. Our extensive experiment results show that Mesh-Attention can achieve up to 3.4x speedup (2.9x on average) and reduce the communication volume by up to 85.4% (79.0% on average) on 256 GPUs. Our scalability results further demonstrate that Mesh-Attention sustains superior performance as the system scales, substantially reducing overhead in large-scale deployments. The results convincingly confirm the advantage of Mesh-Attention.




Abstract:Recent progress in humanoid robots has unlocked agile locomotion skills, including backflipping, running, and crawling. Yet it remains challenging for a humanoid robot to perform forceful manipulation tasks such as moving objects, wiping, and pushing a cart. We propose adaptive Compliance Humanoid control through hIsight Perturbation (CHIP), a plug-and-play module that enables controllable end-effector stiffness while preserving agile tracking of dynamic reference motions. CHIP is easy to implement and requires neither data augmentation nor additional reward tuning. We show that a generalist motion-tracking controller trained with CHIP can perform a diverse set of forceful manipulation tasks that require different end-effector compliance, such as multi-robot collaboration, wiping, box delivery, and door opening.
Abstract:Agentic reinforcement learning has advanced large language models (LLMs) to reason through long chain-of-thought trajectories while interleaving external tool use. Existing approaches assume a fixed inventory of tools, limiting LLM agents' adaptability to new or evolving toolsets. We present AutoTool, a framework that equips LLM agents with dynamic tool-selection capabilities throughout their reasoning trajectories. We first construct a 200k dataset with explicit tool-selection rationales across 1,000+ tools and 100+ tasks spanning mathematics, science, code generation, and multimodal reasoning. Building on this data foundation, AutoTool employs a dual-phase optimization pipeline: (i) supervised and RL-based trajectory stabilization for coherent reasoning, and (ii) KL-regularized Plackett-Luce ranking to refine consistent multi-step tool selection. Across ten diverse benchmarks, we train two base models, Qwen3-8B and Qwen2.5-VL-7B, with AutoTool. With fewer parameters, AutoTool consistently outperforms advanced LLM agents and tool-integration methods, yielding average gains of 6.4% in math & science reasoning, 4.5% in search-based QA, 7.7% in code generation, and 6.9% in multimodal understanding. In addition, AutoTool exhibits stronger generalization by dynamically leveraging unseen tools from evolving toolsets during inference.
Abstract:Recent advances in large language models (LLMs) have greatly improved their reasoning and decision-making abilities when deployed as agents. Richer reasoning, however, often comes at the cost of longer chain of thought (CoT), hampering interaction efficiency in real-world scenarios. Nevertheless, there still lacks systematic definition of LLM agent efficiency, hindering targeted improvements. To this end, we introduce dual-efficiency, comprising (i) step-level efficiency, which minimizes tokens per step, and (ii) trajectory-level efficiency, which minimizes the number of steps to complete a task. Building on this definition, we propose DEPO, a dual-efficiency preference optimization method that jointly rewards succinct responses and fewer action steps. Experiments on WebShop and BabyAI show that DEPO cuts token usage by up to 60.9% and steps by up to 26.9%, while achieving up to a 29.3% improvement in performance. DEPO also generalizes to three out-of-domain math benchmarks and retains its efficiency gains when trained on only 25% of the data. Our project page is at https://opencausalab.github.io/DEPO.
Abstract:Effective presentation skills are essential in education, professional communication, and public speaking, yet learners often lack access to high-quality exemplars or personalized coaching. Existing AI tools typically provide isolated functionalities such as speech scoring or script generation without integrating reference modeling and interactive feedback into a cohesive learning experience. We introduce a dual-agent system that supports presentation practice through two complementary roles: the Ideal Presentation Agent and the Coach Agent. The Ideal Presentation Agent converts user-provided slides into model presentation videos by combining slide processing, visual-language analysis, narration script generation, personalized voice synthesis, and synchronized video assembly. The Coach Agent then evaluates user-recorded presentations against these exemplars, conducting multimodal speech analysis and delivering structured feedback in an Observation-Impact-Suggestion (OIS) format. To enhance the authenticity of the learning experience, the Coach Agent incorporates an Audience Agent, which simulates the perspective of a human listener and provides humanized feedback reflecting audience reactions and engagement. Together, these agents form a closed loop of observation, practice, and feedback. Implemented on a robust backend with multi-model integration, voice cloning, and error handling mechanisms, the system demonstrates how AI-driven agents can provide engaging, human-centered, and scalable support for presentation skill development in both educational and professional contexts.
Abstract:The rapid evolution of video generative models has shifted their focus from producing visually plausible outputs to tackling tasks requiring physical plausibility and logical consistency. However, despite recent breakthroughs such as Veo 3's chain-of-frames reasoning, it remains unclear whether these models can exhibit reasoning capabilities similar to large language models (LLMs). Existing benchmarks predominantly evaluate visual fidelity and temporal coherence, failing to capture higher-order reasoning abilities. To bridge this gap, we propose TiViBench, a hierarchical benchmark specifically designed to evaluate the reasoning capabilities of image-to-video (I2V) generation models. TiViBench systematically assesses reasoning across four dimensions: i) Structural Reasoning & Search, ii) Spatial & Visual Pattern Reasoning, iii) Symbolic & Logical Reasoning, and iv) Action Planning & Task Execution, spanning 24 diverse task scenarios across 3 difficulty levels. Through extensive evaluations, we show that commercial models (e.g., Sora 2, Veo 3.1) demonstrate stronger reasoning potential, while open-source models reveal untapped potential that remains hindered by limited training scale and data diversity. To further unlock this potential, we introduce VideoTPO, a simple yet effective test-time strategy inspired by preference optimization. By performing LLM self-analysis on generated candidates to identify strengths and weaknesses, VideoTPO significantly enhances reasoning performance without requiring additional training, data, or reward models. Together, TiViBench and VideoTPO pave the way for evaluating and advancing reasoning in video generation models, setting a foundation for future research in this emerging field.
Abstract:Despite the rise of billion-parameter foundation models trained across thousands of GPUs, similar scaling gains have not been shown for humanoid control. Current neural controllers for humanoids remain modest in size, target a limited behavior set, and are trained on a handful of GPUs over several days. We show that scaling up model capacity, data, and compute yields a generalist humanoid controller capable of creating natural and robust whole-body movements. Specifically, we posit motion tracking as a natural and scalable task for humanoid control, leverageing dense supervision from diverse motion-capture data to acquire human motion priors without manual reward engineering. We build a foundation model for motion tracking by scaling along three axes: network size (from 1.2M to 42M parameters), dataset volume (over 100M frames, 700 hours of high-quality motion data), and compute (9k GPU hours). Beyond demonstrating the benefits of scale, we show the practical utility of our model through two mechanisms: (1) a real-time universal kinematic planner that bridges motion tracking to downstream task execution, enabling natural and interactive control, and (2) a unified token space that supports various motion input interfaces, such as VR teleoperation devices, human videos, and vision-language-action (VLA) models, all using the same policy. Scaling motion tracking exhibits favorable properties: performance improves steadily with increased compute and data diversity, and learned representations generalize to unseen motions, establishing motion tracking at scale as a practical foundation for humanoid control.
Abstract:Structured pruning of large language models (LLMs) offers substantial efficiency improvements by removing entire hidden units, yet current approaches often suffer from significant performance degradation, particularly in zero-shot settings, and necessitate costly recovery techniques such as supervised fine-tuning (SFT) or adapter insertion. To address these critical shortcomings, we introduce NIRVANA, a novel pruning method explicitly designed to balance immediate zero-shot accuracy preservation with robust fine-tuning capability. Leveraging a first-order saliency criterion derived from the Neural Tangent Kernel under Adam optimization dynamics, NIRVANA provides a theoretically grounded pruning strategy that respects essential model training behaviors. To further address the unique challenges posed by structured pruning, NIRVANA incorporates an adaptive sparsity allocation mechanism across layers and modules (attention vs. MLP), which adjusts pruning intensity between modules in a globally balanced manner. Additionally, to mitigate the high sensitivity of pruning decisions to calibration data quality, we propose a simple yet effective KL divergence-based calibration data selection strategy, ensuring more reliable and task-agnostic pruning outcomes. Comprehensive experiments conducted on Llama3, Qwen, and T5 models demonstrate that NIRVANA outperforms existing structured pruning methods under equivalent sparsity constraints, providing a theoretically sound and practical approach to LLM compression. The code is available at https://github.com/iDEA-iSAIL-Lab-UIUC/NIRVANA.
Abstract:Enhancing the mathematical reasoning of large language models (LLMs) demands high-quality training data, yet conventional methods face critical challenges in scalability, cost, and data reliability. To address these limitations, we propose a novel program-assisted synthesis framework that systematically generates a high-quality mathematical corpus with guaranteed diversity, complexity, and correctness. This framework integrates mathematical knowledge systems and domain-specific tools to create executable programs. These programs are then translated into natural language problem-solution pairs and vetted by a bilateral validation mechanism that verifies solution correctness against program outputs and ensures program-problem consistency. We have generated 12.3 million such problem-solving triples. Experiments demonstrate that models fine-tuned on our data significantly improve their inference capabilities, achieving state-of-the-art performance on several benchmark datasets and showcasing the effectiveness of our synthesis approach.




Abstract:We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a suite of multi-principled verifiers. Unlike previous alignment methods such as RLHF that simply learn human preferences, SafeLadder enables SafeWork-R1 to develop intrinsic safety reasoning and self-reflection abilities, giving rise to safety `aha' moments. Notably, SafeWork-R1 achieves an average improvement of $46.54\%$ over its base model Qwen2.5-VL-72B on safety-related benchmarks without compromising general capabilities, and delivers state-of-the-art safety performance compared to leading proprietary models such as GPT-4.1 and Claude Opus 4. To further bolster its reliability, we implement two distinct inference-time intervention methods and a deliberative search mechanism, enforcing step-level verification. Finally, we further develop SafeWork-R1-InternVL3-78B, SafeWork-R1-DeepSeek-70B, and SafeWork-R1-Qwen2.5VL-7B. All resulting models demonstrate that safety and capability can co-evolve synergistically, highlighting the generalizability of our framework in building robust, reliable, and trustworthy general-purpose AI.