Large language models (LLMs) have shown remarkable capability in natural language tasks, yet debate persists on whether they truly comprehend deep structure (i.e., core semantics) or merely rely on surface structure (e.g., presentation format). Prior studies observe that LLMs' performance declines when intervening on surface structure, arguing their success relies on surface structure recognition. However, surface structure sensitivity does not prevent deep structure comprehension. Rigorously evaluating LLMs' capability requires analyzing both, yet deep structure is often overlooked. To this end, we assess LLMs' comprehension ability using causal mediation analysis, aiming to fully discover the capability of using both deep and surface structures. Specifically, we formulate the comprehension of deep structure as direct causal effect (DCE) and that of surface structure as indirect causal effect (ICE), respectively. To address the non-estimability of original DCE and ICE -- stemming from the infeasibility of isolating mutual influences of deep and surface structures, we develop the corresponding quantifiable surrogates, including approximated DCE (ADCE) and approximated ICE (AICE). We further apply the ADCE to evaluate a series of mainstream LLMs, showing that most of them exhibit deep structure comprehension ability, which grows along with the prediction accuracy. Comparing ADCE and AICE demonstrates closed-source LLMs rely more on deep structure, while open-source LLMs are more surface-sensitive, which decreases with model scale. Theoretically, ADCE is a bidirectional evaluation, which measures both the sufficiency and necessity of deep structure changes in causing output variations, thus offering a more comprehensive assessment than accuracy, a common evaluation in LLMs. Our work provides new insights into LLMs' deep structure comprehension and offers novel methods for LLMs evaluation.