Abstract:Time series data are integral to critical applications across domains such as finance, healthcare, transportation, and environmental science. While recent work has begun to explore multi-task time series question answering (QA), current benchmarks remain limited to forecasting and anomaly detection tasks. We introduce TSAQA, a novel unified benchmark designed to broaden task coverage and evaluate diverse temporal analysis capabilities. TSAQA integrates six diverse tasks under a single framework ranging from conventional analysis, including anomaly detection and classification, to advanced analysis, such as characterization, comparison, data transformation, and temporal relationship analysis. Spanning 210k samples across 13 domains, the dataset employs diverse formats, including true-or-false (TF), multiple-choice (MC), and a novel puzzling (PZ), to comprehensively assess time series analysis. Zero-shot evaluation demonstrates that these tasks are challenging for current Large Language Models (LLMs): the best-performing commercial LLM, Gemini-2.5-Flash, achieves an average score of only 65.08. Although instruction tuning boosts open-source performance: the best-performing open-source model, LLaMA-3.1-8B, shows significant room for improvement, highlighting the complexity of temporal analysis for LLMs.
Abstract:Graph data is informative to represent complex relationships such as transactions between accounts, communications between devices, and dependencies among machines or processes. Correspondingly, graph anomaly detection (GAD) plays a critical role in identifying anomalies across various domains, including finance, cybersecurity, manufacturing, etc. Facing the large-volume and multi-domain graph data, nascent efforts attempt to develop foundational generalist models capable of detecting anomalies in unseen graphs without retraining. To the best of our knowledge, the different feature semantics and dimensions of cross-domain graph data heavily hinder the development of the graph foundation model, leaving further in-depth continual learning and inference capabilities a quite open problem. Hence, we propose OWLEYE, a novel zero-shot GAD framework that learns transferable patterns of normal behavior from multiple graphs, with a threefold contribution. First, OWLEYE proposes a cross-domain feature alignment module to harmonize feature distributions, which preserves domain-specific semantics during alignment. Second, with aligned features, to enable continuous learning capabilities, OWLEYE designs the multi-domain multi-pattern dictionary learning to encode shared structural and attribute-based patterns. Third, for achieving the in-context learning ability, OWLEYE develops a truncated attention-based reconstruction module to robustly detect anomalies without requiring labeled data for unseen graph-structured data. Extensive experiments on real-world datasets demonstrate that OWLEYE achieves superior performance and generalizability compared to state-of-the-art baselines, establishing a strong foundation for scalable and label-efficient anomaly detection.
Abstract:Reasoning is a fundamental cognitive process underlying inference, problem-solving, and decision-making. While large language models (LLMs) demonstrate strong reasoning capabilities in closed-world settings, they struggle in open-ended and dynamic environments. Agentic reasoning marks a paradigm shift by reframing LLMs as autonomous agents that plan, act, and learn through continual interaction. In this survey, we organize agentic reasoning along three complementary dimensions. First, we characterize environmental dynamics through three layers: foundational agentic reasoning, which establishes core single-agent capabilities including planning, tool use, and search in stable environments; self-evolving agentic reasoning, which studies how agents refine these capabilities through feedback, memory, and adaptation; and collective multi-agent reasoning, which extends intelligence to collaborative settings involving coordination, knowledge sharing, and shared goals. Across these layers, we distinguish in-context reasoning, which scales test-time interaction through structured orchestration, from post-training reasoning, which optimizes behaviors via reinforcement learning and supervised fine-tuning. We further review representative agentic reasoning frameworks across real-world applications and benchmarks, including science, robotics, healthcare, autonomous research, and mathematics. This survey synthesizes agentic reasoning methods into a unified roadmap bridging thought and action, and outlines open challenges and future directions, including personalization, long-horizon interaction, world modeling, scalable multi-agent training, and governance for real-world deployment.
Abstract:Accurate predictions rely on the expressiveness power of graph deep learning frameworks like graph neural networks and graph transformers, where a positional encoding mechanism has become much more indispensable in recent state-of-the-art works to record the canonical position information. However, the current positional encoding is limited in three aspects: (1) most positional encoding methods use pre-defined, and fixed functions, which are inadequate to adapt to the complex attributed graphs; (2) a few pioneering works proposed the learnable positional encoding but are still limited to the structural information, not considering the real-world time-evolving topological and feature information; (3) most positional encoding methods are equipped with transformers' attention mechanism to fully leverage their capabilities, where the dense or relational attention is often unaffordable on large-scale structured data. Hence, we aim to develop Learnable Spatial-Temporal Positional Encoding in an effective and efficient manner and propose a simple temporal link prediction model named L-STEP. Briefly, for L-STEP, we (1) prove the proposed positional learning scheme can preserve the graph property from the spatial-temporal spectral viewpoint, (2) verify that MLPs can fully exploit the expressiveness and reach transformers' performance on that encoding, (3) change different initial positional encoding inputs to show robustness, (4) analyze the theoretical complexity and obtain less empirical running time than SOTA, and (5) demonstrate its temporal link prediction out-performance on 13 classic datasets and with 10 algorithms in both transductive and inductive settings using 3 different sampling strategies. Also, L-STEP obtains the leading performance in the newest large-scale TGB benchmark. Our code is available at https://github.com/kthrn22/L-STEP.
Abstract:In the era of foundation models, Out-of- Distribution (OOD) problems, i.e., the data discrepancy between the training environments and testing environments, hinder AI generalization. Further, relational data like graphs disobeying the Independent and Identically Distributed (IID) condition makes the problem more challenging, especially much harder when it is associated with time. Motivated by this, to realize the robust invariant learning over temporal graphs, we want to investigate what components in temporal graphs are most invariant and representative with respect to labels. With the Information Bottleneck (IB) method, we propose an error-bounded Invariant Link Selector that can distinguish invariant components and variant components during the training process to make the deep learning model generalizable for different testing scenarios. Besides deriving a series of rigorous generalizable optimization functions, we also equip the training with task-specific loss functions, e.g., temporal link prediction, to make pretrained models solve real-world application tasks like citation recommendation and merchandise recommendation, as demonstrated in our experiments with state-of-the-art (SOTA) methods. Our code is available at https://github.com/kthrn22/OOD-Linker.
Abstract:Climate science studies the structure and dynamics of Earth's climate system and seeks to understand how climate changes over time, where the data is usually stored in the format of time series, recording the climate features, geolocation, time attributes, etc. Recently, much research attention has been paid to the climate benchmarks. In addition to the most common task of weather forecasting, several pioneering benchmark works are proposed for extending the modality, such as domain-specific applications like tropical cyclone intensity prediction and flash flood damage estimation, or climate statement and confidence level in the format of natural language. To further motivate the artificial general intelligence development for climate science, in this paper, we first contribute a multi-modal climate benchmark, i.e., ClimateBench-M, which aligns (1) the time series climate data from ERA5, (2) extreme weather events data from NOAA, and (3) satellite image data from NASA HLS based on a unified spatial-temporal granularity. Second, under each data modality, we also propose a simple but strong generative method that could produce competitive performance in weather forecasting, thunderstorm alerts, and crop segmentation tasks in the proposed ClimateBench-M. The data and code of ClimateBench-M are publicly available at https://github.com/iDEA-iSAIL-Lab-UIUC/ClimateBench-M.
Abstract:Beyond pure text, a substantial amount of knowledge is stored in tables. In real-world scenarios, user questions often require retrieving answers that are distributed across multiple tables. GraphRAG has recently attracted much attention for enhancing LLMs' reasoning capabilities by organizing external knowledge to address ad-hoc and complex questions, exemplifying a promising direction for cross-table question answering. In this paper, to address the current gap in available data, we first introduce a multi-table benchmark, MutliTableQA, comprising 60k tables and 25k user queries collected from real-world sources. Then, we propose the first Graph-Table-RAG framework, namely GTR, which reorganizes table corpora into a heterogeneous graph, employs a hierarchical coarse-to-fine retrieval process to extract the most relevant tables, and integrates graph-aware prompting for downstream LLMs' tabular reasoning. Extensive experiments show that GTR exhibits superior cross-table question-answering performance while maintaining high deployment efficiency, demonstrating its real-world practical applicability.
Abstract:While many advances in time series models focus exclusively on numerical data, research on multimodal time series, particularly those involving contextual textual information commonly encountered in real-world scenarios, remains in its infancy. Consequently, effectively integrating the text modality remains challenging. In this work, we highlight an intuitive yet significant observation that has been overlooked by existing works: time-series-paired texts exhibit periodic properties that closely mirror those of the original time series. Building on this insight, we propose a novel framework, Texts as Time Series (TaTS), which considers the time-series-paired texts to be auxiliary variables of the time series. TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively. Through extensive experiments on both multimodal time series forecasting and imputation tasks across benchmark datasets with various existing time series models, we demonstrate that TaTS can enhance predictive performance and achieve outperformance without modifying model architectures.




Abstract:Graph Self-Supervised Learning (SSL) has emerged as a pivotal area of research in recent years. By engaging in pretext tasks to learn the intricate topological structures and properties of graphs using unlabeled data, these graph SSL models achieve enhanced performance, improved generalization, and heightened robustness. Despite the remarkable achievements of these graph SSL methods, their current implementation poses significant challenges for beginners and practitioners due to the complex nature of graph structures, inconsistent evaluation metrics, and concerns regarding reproducibility hinder further progress in this field. Recognizing the growing interest within the research community, there is an urgent need for a comprehensive, beginner-friendly, and accessible toolkit consisting of the most representative graph SSL algorithms. To address these challenges, we present a Graph SSL toolkit named PyG-SSL, which is built upon PyTorch and is compatible with various deep learning and scientific computing backends. Within the toolkit, we offer a unified framework encompassing dataset loading, hyper-parameter configuration, model training, and comprehensive performance evaluation for diverse downstream tasks. Moreover, we provide beginner-friendly tutorials and the best hyper-parameters of each graph SSL algorithm on different graph datasets, facilitating the reproduction of results. The GitHub repository of the library is https://github.com/iDEA-iSAIL-Lab-UIUC/pyg-ssl.
Abstract:Knowledge graphs (KGs), which store an extensive number of relational facts, serve various applications. Recently, personalized knowledge graphs (PKGs) have emerged as a solution to optimize storage costs by customizing their content to align with users' specific interests within particular domains. In the real world, on one hand, user queries and their underlying interests are inherently evolving, requiring PKGs to adapt continuously; on the other hand, the summarization is constantly expected to be as small as possible in terms of storage cost. However, the existing PKG summarization methods implicitly assume that the user's interests are constant and do not shift. Furthermore, when the size constraint of PKG is extremely small, the existing methods cannot distinguish which facts are more of immediate interest and guarantee the utility of the summarized PKG. To address these limitations, we propose APEX$^2$, a highly scalable PKG summarization framework designed with robust theoretical guarantees to excel in adaptive summarization tasks with extremely small size constraints. To be specific, after constructing an initial PKG, APEX$^2$ continuously tracks the interest shift and adjusts the previous summary. We evaluate APEX$^2$ under an evolving query setting on benchmark KGs containing up to 12 million triples, summarizing with compression ratios $\leq 0.1\%$. The experiments show that APEX outperforms state-of-the-art baselines in terms of both query-answering accuracy and efficiency.