Abstract:While great success has been achieved in building vision models with Contrastive Language-Image Pre-training (CLIP) over Internet-scale image-text pairs, building transferable Graph Neural Networks (GNNs) with CLIP pipeline is challenging because of three fundamental issues: the scarcity of labeled data and text supervision, different levels of downstream tasks, and the conceptual gaps between domains. In this work, to address these issues, we leverage multi-modal prompt learning to effectively adapt pre-trained GNN to downstream tasks and data, given only a few semantically labeled samples, each with extremely weak text supervision. Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously. To accomplish this, we improve state-of-the-art graph prompt method, and then propose the first graph-language multi-modal prompt learning approach for exploiting the knowledge in pre-trained models. Notably, due to the insufficient supervision for fine-tuning, in our paradigm, the pre-trained GNN and the LLM are kept frozen, so the learnable parameters are much fewer than fine-tuning any pre-trained model. Through extensive experiments on real-world datasets, we demonstrate the superior performance of our paradigm in few-shot, multi-task-level, and cross-domain settings. Moreover, we build the first CLIP-style zero-shot classification prototype that can generalize GNNs to unseen classes with extremely weak text supervision.
Abstract:Sequential sentence classification (SSC) in scientific publications is crucial for supporting downstream tasks such as fine-grained information retrieval and extractive summarization. However, current SSC methods are constrained by model size, sequence length, and single-label setting. To address these limitations, this paper proposes LLM-SSC, a large language model (LLM)-based framework for both single- and multi-label SSC tasks. Unlike previous approaches that employ small- or medium-sized language models, the proposed framework utilizes LLMs to generate SSC labels through designed prompts, which enhance task understanding by incorporating demonstrations and a query to describe the prediction target. We also present a multi-label contrastive learning loss with auto-weighting scheme, enabling the multi-label classification task. To support our multi-label SSC analysis, we introduce and release a new dataset, biorc800, which mainly contains unstructured abstracts in the biomedical domain with manual annotations. Experiments demonstrate LLM-SSC's strong performance in SSC under both in-context learning and task-specific tuning settings. We release biorc800 and our code at: https://github.com/ScienceNLP-Lab/LLM-SSC.
Abstract:Root Cause Analysis (RCA) is essential for pinpointing the root causes of failures in microservice systems. Traditional data-driven RCA methods are typically limited to offline applications due to high computational demands, and existing online RCA methods handle only single-modal data, overlooking complex interactions in multi-modal systems. In this paper, we introduce OCEAN, a novel online multi-modal causal structure learning method for root cause localization. OCEAN employs a dilated convolutional neural network to capture long-term temporal dependencies and graph neural networks to learn causal relationships among system entities and key performance indicators. We further design a multi-factor attention mechanism to analyze and reassess the relationships among different metrics and log indicators/attributes for enhanced online causal graph learning. Additionally, a contrastive mutual information maximization-based graph fusion module is developed to effectively model the relationships across various modalities. Extensive experiments on three real-world datasets demonstrate the effectiveness and efficiency of our proposed method.
Abstract:Anomaly detection (AD) has been widely studied for decades in many real-world applications, including fraud detection in finance, and intrusion detection for cybersecurity, etc. Due to the imbalanced nature between protected and unprotected groups and the imbalanced distributions of normal examples and anomalies, the learning objectives of most existing anomaly detection methods tend to solely concentrate on the dominating unprotected group. Thus, it has been recognized by many researchers about the significance of ensuring model fairness in anomaly detection. However, the existing fair anomaly detection methods tend to erroneously label most normal examples from the protected group as anomalies in the imbalanced scenario where the unprotected group is more abundant than the protected group. This phenomenon is caused by the improper design of learning objectives, which statistically focus on learning the frequent patterns (i.e., the unprotected group) while overlooking the under-represented patterns (i.e., the protected group). To address these issues, we propose FairAD, a fairness-aware anomaly detection method targeting the imbalanced scenario. It consists of a fairness-aware contrastive learning module and a rebalancing autoencoder module to ensure fairness and handle the imbalanced data issue, respectively. Moreover, we provide the theoretical analysis that shows our proposed contrastive learning regularization guarantees group fairness. Empirical studies demonstrate the effectiveness and efficiency of FairAD across multiple real-world datasets.
Abstract:Anomaly detection on graphs plays an important role in many real-world applications. Usually, these data are composed of multiple types (e.g., user information and transaction records for financial data), thus exhibiting view heterogeneity. Therefore, it can be challenging to leverage such multi-view information and learn the graph's contextual information to identify rare anomalies. To tackle this problem, many deep learning-based methods utilize contrastive learning loss as a regularization term to learn good representations. However, many existing contrastive-based methods show that traditional contrastive learning losses fail to consider the semantic information (e.g., class membership information). In addition, we theoretically show that clustering-based contrastive learning also easily leads to a sub-optimal solution. To address these issues, in this paper, we proposed an autoencoder-based clustering framework regularized by a similarity-guided contrastive loss to detect anomalous nodes. Specifically, we build a similarity map to help the model learn robust representations without imposing a hard margin constraint between the positive and negative pairs. Theoretically, we show that the proposed similarity-guided loss is a variant of contrastive learning loss, and how it alleviates the issue of unreliable pseudo-labels with the connection to graph spectral clustering. Experimental results on several datasets demonstrate the effectiveness and efficiency of our proposed framework.
Abstract:Root cause analysis (RCA) is crucial for enhancing the reliability and performance of complex systems. However, progress in this field has been hindered by the lack of large-scale, open-source datasets tailored for RCA. To bridge this gap, we introduce LEMMA-RCA, a large dataset designed for diverse RCA tasks across multiple domains and modalities. LEMMA-RCA features various real-world fault scenarios from IT and OT operation systems, encompassing microservices, water distribution, and water treatment systems, with hundreds of system entities involved. We evaluate the quality of LEMMA-RCA by testing the performance of eight baseline methods on this dataset under various settings, including offline and online modes as well as single and multiple modalities. Our experimental results demonstrate the high quality of LEMMA-RCA. The dataset is publicly available at https://lemma-rca.github.io/.
Abstract:In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data. Many existing foundation models benefit from the generalization capability of contrastive self-supervised learning by learning compact and high-quality representations without relying on any label information. Amidst the explosive advancements in foundation models across multiple domains, including natural language processing and computer vision, a thorough survey on heterogeneous contrastive learning for the foundation model is urgently needed. In response, this survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models, highlighting the open challenges and future trends of contrastive learning. In particular, we first present how the recent advanced contrastive learning-based methods deal with view heterogeneity and how contrastive learning is applied to train and fine-tune the multi-view foundation models. Then, we move to contrastive learning methods for task heterogeneity, including pretraining tasks and downstream tasks, and show how different tasks are combined with contrastive learning loss for different purposes. Finally, we conclude this survey by discussing the open challenges and shedding light on the future directions of contrastive learning.
Abstract:Effective root cause analysis (RCA) is vital for swiftly restoring services, minimizing losses, and ensuring the smooth operation and management of complex systems. Previous data-driven RCA methods, particularly those employing causal discovery techniques, have primarily focused on constructing dependency or causal graphs for backtracking the root causes. However, these methods often fall short as they rely solely on data from a single modality, thereby resulting in suboptimal solutions. In this work, we propose Mulan, a unified multi-modal causal structure learning method for root cause localization. We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data. To explore intricate relationships across different modalities, we propose a contrastive learning-based approach to extract modality-invariant and modality-specific representations within a shared latent space. Additionally, we introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph. Finally, we employ random walk with restart to simulate system fault propagation and identify potential root causes. Extensive experiments on three real-world datasets validate the effectiveness of our proposed framework.
Abstract:There have been tremendous efforts over the past decades dedicated to the generation of realistic graphs in a variety of domains, ranging from social networks to computer networks, from gene regulatory networks to online transaction networks. Despite the remarkable success, the vast majority of these works are unsupervised in nature and are typically trained to minimize the expected graph reconstruction loss, which would result in the representation disparity issue in the generated graphs, i.e., the protected groups (often minorities) contribute less to the objective and thus suffer from systematically higher errors. In this paper, we aim to tailor graph generation to downstream mining tasks by leveraging label information and user-preferred parity constraint. In particular, we start from the investigation of representation disparity in the context of graph generative models. To mitigate the disparity, we propose a fairness-aware graph generative model named FairGen. Our model jointly trains a label-informed graph generation module and a fair representation learning module by progressively learning the behaviors of the protected and unprotected groups, from the `easy' concepts to the `hard' ones. In addition, we propose a generic context sampling strategy for graph generative models, which is proven to be capable of fairly capturing the contextual information of each group with a high probability. Experimental results on seven real-world data sets, including web-based graphs, demonstrate that FairGen (1) obtains performance on par with state-of-the-art graph generative models across six network properties, (2) mitigates the representation disparity issues in the generated graphs, and (3) substantially boosts the model performance by up to 17% in downstream tasks via data augmentation.
Abstract:In the era of big data, we are often facing the challenge of data heterogeneity and the lack of label information simultaneously. In the financial domain (e.g., fraud detection), the heterogeneous data may include not only numerical data (e.g., total debt and yearly income), but also text and images (e.g., financial statement and invoice images). At the same time, the label information (e.g., fraud transactions) may be missing for building predictive models. To address these challenges, many state-of-the-art multi-view clustering methods have been proposed and achieved outstanding performance. However, these methods typically do not take into consideration the fairness aspect and are likely to generate biased results using sensitive information such as race and gender. Therefore, in this paper, we propose a fairness-aware multi-view clustering method named FairMVC. It incorporates the group fairness constraint into the soft membership assignment for each cluster to ensure that the fraction of different groups in each cluster is approximately identical to the entire data set. Meanwhile, we adopt the idea of both contrastive learning and non-contrastive learning and propose novel regularizers to handle heterogeneous data in complex scenarios with missing data or noisy features. Experimental results on real-world data sets demonstrate the effectiveness and efficiency of the proposed framework. We also derive insights regarding the relative performance of the proposed regularizers in various scenarios.