Abstract:The contextual bandit has been identified as a powerful framework to formulate the recommendation process as a sequential decision-making process, where each item is regarded as an arm and the objective is to minimize the regret of $T$ rounds. In this paper, we study a new problem, Clustering of Neural Bandits, by extending previous work to the arbitrary reward function, to strike a balance between user heterogeneity and user correlations in the recommender system. To solve this problem, we propose a novel algorithm called M-CNB, which utilizes a meta-learner to represent and rapidly adapt to dynamic clusters, along with an informative Upper Confidence Bound (UCB)-based exploration strategy. We provide an instance-dependent performance guarantee for the proposed algorithm that withstands the adversarial context, and we further prove the guarantee is at least as good as state-of-the-art (SOTA) approaches under the same assumptions. In extensive experiments conducted in both recommendation and online classification scenarios, M-CNB outperforms SOTA baselines. This shows the effectiveness of the proposed approach in improving online recommendation and online classification performance.
Abstract:Recent advancements in contrastive learning have revolutionized self-supervised representation learning and achieved state-of-the-art performance on benchmark tasks. While most existing methods focus on applying contrastive learning to input data modalities such as images, natural language sentences, or networks, they overlook the potential of utilizing outputs from previously trained encoders. In this paper, we introduce SIMSKIP, a novel contrastive learning framework that specifically refines input embeddings for downstream tasks. Unlike traditional unsupervised learning approaches, SIMSKIP takes advantage of the output embeddings of encoder models as its input. Through theoretical analysis, we provide evidence that applying SIMSKIP does not result in larger upper bounds on downstream task errors than those of the original embeddings, which serve as SIMSKIP's input. Experimental results on various open datasets demonstrate that the embeddings produced by SIMSKIP improve performance on downstream tasks.
Abstract:conversational question answering (convQA) over knowledge graphs (KGs) involves answering multi-turn natural language questions about information contained in a KG. State-of-the-art methods of ConvQA often struggle with inexplicit question-answer pairs. These inputs are easy for human beings to understand given a conversation history, but hard for a machine to interpret, which can degrade ConvQA performance. To address this problem, we propose a reinforcement learning (RL) based model, CornNet, which utilizes question reformulations generated by large language models (LLMs) to improve ConvQA performance. CornNet adopts a teacher-student architecture where a teacher model learns question representations using human writing reformulations, and a student model to mimic the teacher model's output via reformulations generated by LLMs. The learned question representation is then used by an RL model to locate the correct answer in a KG. Extensive experimental results show that CornNet outperforms state-of-the-art convQA models.
Abstract:Graph Neural Networks (GNNs) have been widely applied on a variety of real-world applications, such as social recommendation. However, existing GNN-based models on social recommendation suffer from serious problems of generalization and oversmoothness, because of the underexplored negative sampling method and the direct implanting of the off-the-shelf GNN models. In this paper, we propose a succinct multi-network GNN-based neural model (NeMo) for social recommendation. Compared with the existing methods, the proposed model explores a generative negative sampling strategy, and leverages both the positive and negative user-item interactions for users' interest propagation. The experiments show that NeMo outperforms the state-of-the-art baselines on various real-world benchmark datasets (e.g., by up to 38.8% in terms of NDCG@15).
Abstract:Reasoning is a fundamental capability for harnessing valuable insight, knowledge and patterns from knowledge graphs. Existing work has primarily been focusing on point-wise reasoning, including search, link predication, entity prediction, subgraph matching and so on. This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues. We envision that the comparative reasoning will complement and expand the existing point-wise reasoning over knowledge graphs. In detail, we develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs. We present both the system architecture and its core algorithms, including knowledge segment extraction, pairwise reasoning and collective reasoning. Empirical evaluations demonstrate the efficacy of the proposed KompaRe.