Abstract:Anomaly detection on graphs plays an important role in many real-world applications. Usually, these data are composed of multiple types (e.g., user information and transaction records for financial data), thus exhibiting view heterogeneity. Therefore, it can be challenging to leverage such multi-view information and learn the graph's contextual information to identify rare anomalies. To tackle this problem, many deep learning-based methods utilize contrastive learning loss as a regularization term to learn good representations. However, many existing contrastive-based methods show that traditional contrastive learning losses fail to consider the semantic information (e.g., class membership information). In addition, we theoretically show that clustering-based contrastive learning also easily leads to a sub-optimal solution. To address these issues, in this paper, we proposed an autoencoder-based clustering framework regularized by a similarity-guided contrastive loss to detect anomalous nodes. Specifically, we build a similarity map to help the model learn robust representations without imposing a hard margin constraint between the positive and negative pairs. Theoretically, we show that the proposed similarity-guided loss is a variant of contrastive learning loss, and how it alleviates the issue of unreliable pseudo-labels with the connection to graph spectral clustering. Experimental results on several datasets demonstrate the effectiveness and efficiency of our proposed framework.
Abstract:With the emergence of numerous legal LLMs, there is currently a lack of a comprehensive benchmark for evaluating their legal abilities. In this paper, we propose the first Chinese Legal LLMs benchmark based on legal capabilities. Through the collaborative efforts of legal and artificial intelligence experts, we divide the legal capabilities of LLMs into three levels: basic legal NLP capability, basic legal application capability, and complex legal application capability. We have completed the first phase of evaluation, which mainly focuses on the capability of basic legal NLP. The evaluation results show that although some legal LLMs have better performance than their backbones, there is still a gap compared to ChatGPT. Our benchmark can be found at URL.
Abstract:Credit and risk assessments are cornerstones of the financial landscape, impacting both individual futures and broader societal constructs. Existing credit scoring models often exhibit limitations stemming from knowledge myopia and task isolation. In response, we formulate three hypotheses and undertake an extensive case study to investigate LLMs' viability in credit assessment. Our empirical investigations unveil LLMs' ability to overcome the limitations inherent in conventional models. We introduce a novel benchmark curated for credit assessment purposes, fine-tune a specialized Credit and Risk Assessment Large Language Model (CALM), and rigorously examine the biases that LLMs may harbor. Our findings underscore LLMs' potential in revolutionizing credit assessment, showcasing their adaptability across diverse financial evaluations, and emphasizing the critical importance of impartial decision-making in the financial sector. Our datasets, models, and benchmarks are open-sourced for other researchers.
Abstract:Diffusion on graphs is ubiquitous with numerous high-impact applications. In these applications, complete diffusion histories play an essential role in terms of identifying dynamical patterns, reflecting on precaution actions, and forecasting intervention effects. Despite their importance, complete diffusion histories are rarely available and are highly challenging to reconstruct due to ill-posedness, explosive search space, and scarcity of training data. To date, few methods exist for diffusion history reconstruction. They are exclusively based on the maximum likelihood estimation (MLE) formulation and require to know true diffusion parameters. In this paper, we study an even harder problem, namely reconstructing Diffusion history from A single SnapsHot} (DASH), where we seek to reconstruct the history from only the final snapshot without knowing true diffusion parameters. We start with theoretical analyses that reveal a fundamental limitation of the MLE formulation. We prove: (a) estimation error of diffusion parameters is unavoidable due to NP-hardness of diffusion parameter estimation, and (b) the MLE formulation is sensitive to estimation error of diffusion parameters. To overcome the inherent limitation of the MLE formulation, we propose a novel barycenter formulation: finding the barycenter of the posterior distribution of histories, which is provably stable against the estimation error of diffusion parameters. We further develop an effective solver named DIffusion hiTting Times with Optimal proposal (DITTO) by reducing the problem to estimating posterior expected hitting times via the Metropolis--Hastings Markov chain Monte Carlo method (M--H MCMC) and employing an unsupervised graph neural network to learn an optimal proposal to accelerate the convergence of M--H MCMC. We conduct extensive experiments to demonstrate the efficacy of the proposed method.
Abstract:Analysis of dental radiographs is an important part of the diagnostic process in daily clinical practice. Interpretation by an expert includes teeth detection and numbering. In this project, a novel solution based on adaptive histogram equalization and convolution neural network (CNN) is proposed, which automatically performs the task for dental x-rays. In order to improve the detection accuracy, we propose three pre-processing techniques to supplement the baseline CNN based on some prior domain knowledge. Firstly, image sharpening and median filtering are used to remove impulse noise, and the edge is enhanced to some extent. Next, adaptive histogram equalization is used to overcome the problem of excessive amplification noise of HE. Finally, a multi-CNN hybrid model is proposed to classify six different locations of dental slices. The results showed that the accuracy and specificity of the test set exceeded 90\%, and the AUC reached 0.97. In addition, four dentists were invited to manually annotate the test data set (independently) and then compare it with the labels obtained by our proposed algorithm. The results show that our method can effectively identify the X-ray location of teeth.