Abstract:Sound Event Localization and Detection (SELD) combines the Sound Event Detection (SED) with the corresponding Direction Of Arrival (DOA). Recently, adopted event oriented multi-track methods affect the generality in polyphonic environments due to the limitation of the number of tracks. To enhance the generality in polyphonic environments, we propose Spatial Mapping and Regression Localization for SELD (SMRL-SELD). SMRL-SELD segments the 3D spatial space, mapping it to a 2D plane, and a new regression localization loss is proposed to help the results converge toward the location of the corresponding event. SMRL-SELD is location-oriented, allowing the model to learn event features based on orientation. Thus, the method enables the model to process polyphonic sounds regardless of the number of overlapping events. We conducted experiments on STARSS23 and STARSS22 datasets and our proposed SMRL-SELD outperforms the existing SELD methods in overall evaluation and polyphony environments.
Abstract:Visual grounding is the task of locating objects specified by natural language expressions. Existing methods extend generic object detection frameworks to tackle this task. They typically extract visual and textual features separately using independent visual and textual encoders, then fuse these features in a multi-modal decoder for final prediction. However, visual grounding presents unique challenges. It often involves locating objects with different text descriptions within the same image. Existing methods struggle with this task because the independent visual encoder produces identical visual features for the same image, limiting detection performance. Some recently approaches propose various language-guided visual encoders to address this issue, but they mostly rely solely on textual information and require sophisticated designs. In this paper, we introduce Multi-modal Conditional Adaptation (MMCA), which enables the visual encoder to adaptively update weights, directing its focus towards text-relevant regions. Specifically, we first integrate information from different modalities to obtain multi-modal embeddings. Then we utilize a set of weighting coefficients, which generated from the multimodal embeddings, to reorganize the weight update matrices and apply them to the visual encoder of the visual grounding model. Extensive experiments on four widely used datasets demonstrate that MMCA achieves significant improvements and state-of-the-art results. Ablation experiments further demonstrate the lightweight and efficiency of our method. Our source code is available at: https://github.com/Mr-Bigworth/MMCA.