Abstract:Reasoning is a fundamental cognitive process underlying inference, problem-solving, and decision-making. While large language models (LLMs) demonstrate strong reasoning capabilities in closed-world settings, they struggle in open-ended and dynamic environments. Agentic reasoning marks a paradigm shift by reframing LLMs as autonomous agents that plan, act, and learn through continual interaction. In this survey, we organize agentic reasoning along three complementary dimensions. First, we characterize environmental dynamics through three layers: foundational agentic reasoning, which establishes core single-agent capabilities including planning, tool use, and search in stable environments; self-evolving agentic reasoning, which studies how agents refine these capabilities through feedback, memory, and adaptation; and collective multi-agent reasoning, which extends intelligence to collaborative settings involving coordination, knowledge sharing, and shared goals. Across these layers, we distinguish in-context reasoning, which scales test-time interaction through structured orchestration, from post-training reasoning, which optimizes behaviors via reinforcement learning and supervised fine-tuning. We further review representative agentic reasoning frameworks across real-world applications and benchmarks, including science, robotics, healthcare, autonomous research, and mathematics. This survey synthesizes agentic reasoning methods into a unified roadmap bridging thought and action, and outlines open challenges and future directions, including personalization, long-horizon interaction, world modeling, scalable multi-agent training, and governance for real-world deployment.
Abstract:Vision-language models (VLMs), despite their extraordinary zero-shot capabilities, are vulnerable to distribution shifts. Test-time adaptation (TTA) emerges as a predominant strategy to adapt VLMs to unlabeled test data on the fly. However, existing TTA methods heavily rely on zero-shot predictions as pseudo-labels for self-training, which can be unreliable under distribution shifts and misguide adaptation due to two fundamental limitations. First (Modality Gap), distribution shifts induce gaps between visual and textual modalities, making cross-modal relations inaccurate. Second (Visual Nuisance), visual embeddings encode rich but task-irrelevant noise that often overwhelms task-specific semantics under distribution shifts. To address these limitations, we propose SubTTA, which aligns the semantic subspaces of both modalities to enhance zero-shot predictions to better guide the TTA process. To bridge the modality gap, SubTTA extracts the principal subspaces of both modalities and aligns the visual manifold to the textual semantic anchor by minimizing their chordal distance. To eliminate visual nuisance, SubTTA projects the aligned visual features onto the task-specific textual subspace, which filters out task-irrelevant noise by constraining visual embeddings within the valid semantic span, and standard TTA is further performed on the purified space to refine the decision boundaries. Extensive experiments on various benchmarks and VLM architectures demonstrate the effectiveness of SubTTA, yielding an average improvement of 2.24% over state-of-the-art TTA methods.
Abstract:Large language models (LLMs) exhibit complementary strengths arising from differences in pretraining data, model architectures, and decoding behaviors. Inference-time ensembling provides a practical way to combine these capabilities without retraining. However, existing ensemble approaches suffer from fundamental limitations. Most rely on fixed fusion granularity, which lacks the flexibility required for mid-generation adaptation and fails to adapt to different generation characteristics across tasks. To address these challenges, we propose AdaFuse, an adaptive ensemble decoding framework that dynamically selects semantically appropriate fusion units during generation. Rather than committing to a fixed granularity, AdaFuse adjusts fusion behavior on the fly based on the decoding context, with words serving as basic building blocks for alignment. To be specific, we introduce an uncertainty-based criterion to decide whether to apply ensembling at each decoding step. Under confident decoding states, the model continues generation directly. In less certain states, AdaFuse invokes a diversity-aware scaling strategy to explore alternative candidate continuations and inform ensemble decisions. This design establishes a synergistic interaction between adaptive ensembling and test-time scaling, where ensemble decisions guide targeted exploration, and the resulting diversity in turn strengthens ensemble quality. Experiments on open-domain question answering, arithmetic reasoning, and machine translation demonstrate that AdaFuse consistently outperforms strong ensemble baselines, achieving an average relative improvement of 6.88%. The code is available at https://github.com/CCM0111/AdaFuse.
Abstract:Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
Abstract:Supervised fine-tuning (SFT) is the standard approach for post-training large language models (LLMs), yet it often shows limited generalization. We trace this limitation to its default training objective: negative log likelihood (NLL). While NLL is classically optimal when training from scratch, post-training operates in a different paradigm and could violate its optimality assumptions, where models already encode task-relevant priors and supervision can be long and noisy. To this end, we study a general family of probability-based objectives and characterize their effectiveness under different conditions. Through comprehensive experiments and extensive ablation studies across 7 model backbones, 14 benchmarks, and 3 domains, we uncover a critical dimension that governs objective behavior: the model-capability continuum. Near the model-strong end, prior-leaning objectives that downweight low-probability tokens (e.g., $-p$, $-p^{10}$, thresholded variants) consistently outperform NLL; toward the model-weak end, NLL dominates; in between, no single objective prevails. Our theoretical analysis further elucidates how objectives trade places across the continuum, providing a principled foundation for adapting objectives to model capability. Our code is available at https://github.com/GaotangLi/Beyond-Log-Likelihood.
Abstract:Graph neural networks (GNNs) have emerged as a powerful tool for modeling graph-structured data. However, existing GNNs often struggle with heterophilic graphs, where connected nodes tend to have dissimilar features or labels. While numerous methods have been proposed to address this challenge, they primarily focus on architectural designs without directly targeting the root cause of the heterophily problem. These approaches still perform even worse than the simplest MLPs on challenging heterophilic datasets. For instance, our experiments show that 21 latest GNNs still fall behind the MLP on the Actor dataset. This critical challenge calls for an innovative approach to addressing graph heterophily beyond architectural designs. To bridge this gap, we propose and study a new and unexplored paradigm: directly increasing the graph homophily via a carefully designed graph transformation. In this work, we present a simple yet effective framework called GRAPHITE to address graph heterophily. To the best of our knowledge, this work is the first method that explicitly transforms the graph to directly improve the graph homophily. Stemmed from the exact definition of homophily, our proposed GRAPHITE creates feature nodes to facilitate homophilic message passing between nodes that share similar features. Furthermore, we both theoretically and empirically show that our proposed GRAPHITE significantly increases the homophily of originally heterophilic graphs, with only a slight increase in the graph size. Extensive experiments on challenging datasets demonstrate that our proposed GRAPHITE significantly outperforms state-of-the-art methods on heterophilic graphs while achieving comparable accuracy with state-of-the-art methods on homophilic graphs.
Abstract:Existing safety assurance research has primarily focused on training-phase alignment to instill safe behaviors into LLMs. However, recent studies have exposed these methods' susceptibility to diverse jailbreak attacks. Concurrently, inference scaling has significantly advanced LLM reasoning capabilities but remains unexplored in the context of safety assurance. Addressing this gap, our work pioneers inference scaling for robust and effective LLM safety against emerging threats. We reveal that conventional inference scaling techniques, despite their success in reasoning tasks, perform poorly in safety contexts, even falling short of basic approaches like Best-of-N Sampling. We attribute this inefficiency to a newly identified challenge, the exploration--efficiency dilemma, arising from the high computational overhead associated with frequent process reward model (PRM) evaluations. To overcome this dilemma, we propose SAFFRON, a novel inference scaling paradigm tailored explicitly for safety assurance. Central to our approach is the introduction of a multifurcation reward model (MRM) that significantly reduces the required number of reward model evaluations. To operationalize this paradigm, we further propose: (i) a partial supervision training objective for MRM, (ii) a conservative exploration constraint to prevent out-of-distribution explorations, and (iii) a Trie-based key--value caching strategy that facilitates cache sharing across sequences during tree search. Extensive experiments validate the effectiveness of our method. Additionally, we publicly release our trained multifurcation reward model (Saffron-1) and the accompanying token-level safety reward dataset (Safety4M) to accelerate future research in LLM safety. Our code, model, and data are publicly available at https://github.com/q-rz/saffron , and our project homepage is at https://q-rz.github.io/p/saffron .




Abstract:Network alignment (NA) aims to identify node correspondence across different networks and serves as a critical cornerstone behind various downstream multi-network learning tasks. Despite growing research in NA, there lacks a comprehensive library that facilitates the systematic development and benchmarking of NA methods. In this work, we introduce PLANETALIGN, a comprehensive Python library for network alignment that features a rich collection of built-in datasets, methods, and evaluation pipelines with easy-to-use APIs. Specifically, PLANETALIGN integrates 18 datasets and 14 NA methods with extensible APIs for easy use and development of NA methods. Our standardized evaluation pipeline encompasses a wide range of metrics, enabling a systematic assessment of the effectiveness, scalability, and robustness of NA methods. Through extensive comparative studies, we reveal practical insights into the strengths and limitations of existing NA methods. We hope that PLANETALIGN can foster a deeper understanding of the NA problem and facilitate the development and benchmarking of more effective, scalable, and robust methods in the future. The source code of PLANETALIGN is available at https://github.com/yq-leo/PlanetAlign.
Abstract:Time-series forecasting plays a critical role in many real-world applications. Although increasingly powerful models have been developed and achieved superior results on benchmark datasets, through a fine-grained sample-level inspection, we find that (i) no single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases. These findings prompt us to explore how to adaptively leverage the distinct strengths of various forecasting models for different samples. We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models. TimeFuse utilizes meta-features to characterize input time series and trains a learnable fusor to predict optimal model fusion weights for any given input. The fusor can leverage samples from diverse datasets for joint training, allowing it to adapt to a wide variety of temporal patterns and thus generalize to new inputs, even from unseen datasets. Extensive experiments demonstrate the effectiveness of TimeFuse in various long-/short-term forecasting tasks, achieving near-universal improvement over the state-of-the-art individual models. Code is available at https://github.com/ZhiningLiu1998/TimeFuse.




Abstract:Graph domain adaptation (GDA) is a fundamental task in graph machine learning, with techniques like shift-robust graph neural networks (GNNs) and specialized training procedures to tackle the distribution shift problem. Although these model-centric approaches show promising results, they often struggle with severe shifts and constrained computational resources. To address these challenges, we propose a novel model-free framework, GRADATE (GRAph DATa sElector), that selects the best training data from the source domain for the classification task on the target domain. GRADATE picks training samples without relying on any GNN model's predictions or training recipes, leveraging optimal transport theory to capture and adapt to distribution changes. GRADATE is data-efficient, scalable and meanwhile complements existing model-centric GDA approaches. Through comprehensive empirical studies on several real-world graph-level datasets and multiple covariate shift types, we demonstrate that GRADATE outperforms existing selection methods and enhances off-the-shelf GDA methods with much fewer training data.