Abstract:Prior neural architecture search (NAS) for adversarial robustness works have discovered that a lightweight and adversarially robust neural network architecture could exist in a non-robust large teacher network, generally disclosed by heuristic rules through statistical analysis and neural architecture search, generally disclosed by heuristic rules from neural architecture search. However, heuristic methods cannot uniformly handle different adversarial attacks and "teacher" network capacity. To solve this challenge, we propose a Reinforced Compressive Neural Architecture Search (RC-NAS) for Versatile Adversarial Robustness. Specifically, we define task settings that compose datasets, adversarial attacks, and teacher network information. Given diverse tasks, we conduct a novel dual-level training paradigm that consists of a meta-training and a fine-tuning phase to effectively expose the RL agent to diverse attack scenarios (in meta-training), and making it adapt quickly to locate a sub-network (in fine-tuning) for any previously unseen scenarios. Experiments show that our framework could achieve adaptive compression towards different initial teacher networks, datasets, and adversarial attacks, resulting in more lightweight and adversarially robust architectures.
Abstract:Fine-grained open-set recognition (FineOSR) aims to recognize images belonging to classes with subtle appearance differences while rejecting images of unknown classes. A recent trend in OSR shows the benefit of generative models to discriminative unknown detection. As a type of generative model, energy-based models (EBM) are the potential for hybrid modeling of generative and discriminative tasks. However, most existing EBMs suffer from density estimation in high-dimensional space, which is critical to recognizing images from fine-grained classes. In this paper, we explore the low-dimensional latent space with energy-based prior distribution for OSR in a fine-grained visual world. Specifically, based on the latent space EBM, we propose an attribute-aware information bottleneck (AIB), a residual attribute feature aggregation (RAFA) module, and an uncertainty-based virtual outlier synthesis (UVOS) module to improve the expressivity, granularity, and density of the samples in fine-grained classes, respectively. Our method is flexible to take advantage of recent vision transformers for powerful visual classification and generation. The method is validated on both fine-grained and general visual classification datasets while preserving the capability of generating photo-realistic fake images with high resolution.
Abstract:Neural pathways as model explanations consist of a sparse set of neurons that provide the same level of prediction performance as the whole model. Existing methods primarily focus on accuracy and sparsity but the generated pathways may offer limited interpretability thus fall short in explaining the model behavior. In this paper, we suggest two interpretability criteria of neural pathways: (i) same-class neural pathways should primarily consist of class-relevant neurons; (ii) each instance's neural pathway sparsity should be optimally determined. To this end, we propose a Generative Class-relevant Neural Pathway (GEN-CNP) model that learns to predict the neural pathways from the target model's feature maps. We propose to learn class-relevant information from features of deep and shallow layers such that same-class neural pathways exhibit high similarity. We further impose a faithfulness criterion for GEN-CNP to generate pathways with instance-specific sparsity. We propose to transfer the class-relevant neural pathways to explain samples of the same class and show experimentally and qualitatively their faithfulness and interpretability.
Abstract:Evidential deep learning, built upon belief theory and subjective logic, offers a principled and computationally efficient way to turn a deterministic neural network uncertainty-aware. The resultant evidential models can quantify fine-grained uncertainty using the learned evidence. To ensure theoretically sound evidential models, the evidence needs to be non-negative, which requires special activation functions for model training and inference. This constraint often leads to inferior predictive performance compared to standard softmax models, making it challenging to extend them to many large-scale datasets. To unveil the real cause of this undesired behavior, we theoretically investigate evidential models and identify a fundamental limitation that explains the inferior performance: existing evidential activation functions create zero evidence regions, which prevent the model to learn from training samples falling into such regions. A deeper analysis of evidential activation functions based on our theoretical underpinning inspires the design of a novel regularizer that effectively alleviates this fundamental limitation. Extensive experiments over many challenging real-world datasets and settings confirm our theoretical findings and demonstrate the effectiveness of our proposed approach.
Abstract:The Conditional Neural Process (CNP) family of models offer a promising direction to tackle few-shot problems by achieving better scalability and competitive predictive performance. However, the current CNP models only capture the overall uncertainty for the prediction made on a target data point. They lack a systematic fine-grained quantification on the distinct sources of uncertainty that are essential for model training and decision-making under the few-shot setting. We propose Evidential Conditional Neural Processes (ECNP), which replace the standard Gaussian distribution used by CNP with a much richer hierarchical Bayesian structure through evidential learning to achieve epistemic-aleatoric uncertainty decomposition. The evidential hierarchical structure also leads to a theoretically justified robustness over noisy training tasks. Theoretical analysis on the proposed ECNP establishes the relationship with CNP while offering deeper insights on the roles of the evidential parameters. Extensive experiments conducted on both synthetic and real-world data demonstrate the effectiveness of our proposed model in various few-shot settings.
Abstract:Open Set Video Anomaly Detection (OpenVAD) aims to identify abnormal events from video data where both known anomalies and novel ones exist in testing. Unsupervised models learned solely from normal videos are applicable to any testing anomalies but suffer from a high false positive rate. In contrast, weakly supervised methods are effective in detecting known anomalies but could fail in an open world. We develop a novel weakly supervised method for the OpenVAD problem by integrating evidential deep learning (EDL) and normalizing flows (NFs) into a multiple instance learning (MIL) framework. Specifically, we propose to use graph neural networks and triplet loss to learn discriminative features for training the EDL classifier, where the EDL is capable of identifying the unknown anomalies by quantifying the uncertainty. Moreover, we develop an uncertainty-aware selection strategy to obtain clean anomaly instances and a NFs module to generate the pseudo anomalies. Our method is superior to existing approaches by inheriting the advantages of both the unsupervised NFs and the weakly-supervised MIL framework. Experimental results on multiple real-world video datasets show the effectiveness of our method.
Abstract:Recent years have seen a surge in research on dynamic graph representation learning, which aims to model temporal graphs that are dynamic and evolving constantly over time. However, current work typically models graph dynamics with recurrent neural networks (RNNs), making them suffer seriously from computation and memory overheads on large temporal graphs. So far, scalability of dynamic graph representation learning on large temporal graphs remains one of the major challenges. In this paper, we present a scalable framework, namely SpikeNet, to efficiently capture the temporal and structural patterns of temporal graphs. We explore a new direction in that we can capture the evolving dynamics of temporal graphs with spiking neural networks (SNNs) instead of RNNs. As a low-power alternative to RNNs, SNNs explicitly model graph dynamics as spike trains of neuron populations and enable spike-based propagation in an efficient way. Experiments on three large real-world temporal graph datasets demonstrate that SpikeNet outperforms strong baselines on the temporal node classification task with lower computational costs. Particularly, SpikeNet generalizes to a large temporal graph (2M nodes and 13M edges) with significantly fewer parameters and computation overheads. Our code is publicly available at https://github.com/EdisonLeeeee/SpikeNet
Abstract:As a widely used weakly supervised learning scheme, modern multiple instance learning (MIL) models achieve competitive performance at the bag level. However, instance-level prediction, which is essential for many important applications, remains largely unsatisfactory. We propose to conduct novel active deep multiple instance learning that samples a small subset of informative instances for annotation, aiming to significantly boost the instance-level prediction. A variance regularized loss function is designed to properly balance the bias and variance of instance-level predictions, aiming to effectively accommodate the highly imbalanced instance distribution in MIL and other fundamental challenges. Instead of directly minimizing the variance regularized loss that is non-convex, we optimize a distributionally robust bag level likelihood as its convex surrogate. The robust bag likelihood provides a good approximation of the variance based MIL loss with a strong theoretical guarantee. It also automatically balances bias and variance, making it effective to identify the potentially positive instances to support active sampling. The robust bag likelihood can be naturally integrated with a deep architecture to support deep model training using mini-batches of positive-negative bag pairs. Finally, a novel P-F sampling function is developed that combines a probability vector and predicted instance scores, obtained by optimizing the robust bag likelihood. By leveraging the key MIL assumption, the sampling function can explore the most challenging bags and effectively detect their positive instances for annotation, which significantly improves the instance-level prediction. Experiments conducted over multiple real-world datasets clearly demonstrate the state-of-the-art instance-level prediction achieved by the proposed model.
Abstract:Graph Convolutional Networks (GCNs) achieve an impressive performance due to the remarkable representation ability in learning the graph information. However, GCNs, when implemented on a deep network, require expensive computation power, making them difficult to be deployed on battery-powered devices. In contrast, Spiking Neural Networks (SNNs), which perform a bio-fidelity inference process, offer an energy-efficient neural architecture. In this work, we propose SpikingGCN, an end-to-end framework that aims to integrate the embedding of GCNs with the biofidelity characteristics of SNNs. The original graph data are encoded into spike trains based on the incorporation of graph convolution. We further model biological information processing by utilizing a fully connected layer combined with neuron nodes. In a wide range of scenarios (e.g. citation networks, image graph classification, and recommender systems), our experimental results show that the proposed method could gain competitive performance against state-of-the-art approaches. Furthermore, we show that SpikingGCN on a neuromorphic chip can bring a clear advantage of energy efficiency into graph data analysis, which demonstrates its great potential to construct environment-friendly machine learning models.
Abstract:We present a novel dynamic recommendation model that focuses on users who have interactions in the past but turn relatively inactive recently. Making effective recommendations to these time-sensitive cold-start users is critical to maintain the user base of a recommender system. Due to the sparse recent interactions, it is challenging to capture these users' current preferences precisely. Solely relying on their historical interactions may also lead to outdated recommendations misaligned with their recent interests. The proposed model leverages historical and current user-item interactions and dynamically factorizes a user's (latent) preference into time-specific and time-evolving representations that jointly affect user behaviors. These latent factors further interact with an optimized item embedding to achieve accurate and timely recommendations. Experiments over real-world data help demonstrate the effectiveness of the proposed time-sensitive cold-start recommendation model.