Abstract:Graph Neural Networks (GNNs) have exhibited remarkable efficacy in diverse graph learning tasks, particularly on static homophilic graphs. Recent attention has pivoted towards more intricate structures, encompassing (1) static heterophilic graphs encountering the edge heterophily issue in the spatial domain and (2) event-based continuous graphs in the temporal domain. State-of-the-art (SOTA) has been concurrently addressing these two lines of work but tends to overlook the presence of heterophily in the temporal domain, constituting the temporal heterophily issue. Furthermore, we highlight that the edge heterophily issue and the temporal heterophily issue often co-exist in event-based continuous graphs, giving rise to the temporal edge heterophily challenge. To tackle this challenge, this paper first introduces the temporal edge heterophily measurement. Subsequently, we propose the Temporal Heterophilic Graph Convolutional Network (THeGCN), an innovative model that incorporates the low/high-pass graph signal filtering technique to accurately capture both edge (spatial) heterophily and temporal heterophily. Specifically, the THeGCN model consists of two key components: a sampler and an aggregator. The sampler selects events relevant to a node at a given moment. Then, the aggregator executes message-passing, encoding temporal information, node attributes, and edge attributes into node embeddings. Extensive experiments conducted on 5 real-world datasets validate the efficacy of THeGCN.
Abstract:Powerful as they are, graph neural networks (GNNs) are known to be vulnerable to distribution shifts. Recently, test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain without re-accessing the source domain. However, existing TTA algorithms are primarily designed for attribute shifts in vision tasks, where samples are independent. These methods perform poorly on graph data that experience structure shifts, where node connectivity differs between source and target graphs. We attribute this performance gap to the distinct impact of node attribute shifts versus graph structure shifts: the latter significantly degrades the quality of node representations and blurs the boundaries between different node categories. To address structure shifts in graphs, we propose AdaRC, an innovative framework designed for effective and efficient adaptation to structure shifts by adjusting the hop-aggregation parameters in GNNs. To enhance the representation quality, we design a prediction-informed clustering loss to encourage the formation of distinct clusters for different node categories. Additionally, AdaRC seamlessly integrates with existing TTA algorithms, allowing it to handle attribute shifts effectively while improving overall performance under combined structure and attribute shifts. We validate the effectiveness of AdaRC on both synthetic and real-world datasets, demonstrating its robustness across various combinations of structure and attribute shifts.
Abstract:Multivariate Time Series (MTS) forecasting is a fundamental task with numerous real-world applications, such as transportation, climate, and epidemiology. While a myriad of powerful deep learning models have been developed for this task, few works have explored the robustness of MTS forecasting models to malicious attacks, which is crucial for their trustworthy employment in high-stake scenarios. To address this gap, we dive deep into the backdoor attacks on MTS forecasting models and propose an effective attack method named BackTime.By subtly injecting a few stealthy triggers into the MTS data, BackTime can alter the predictions of the forecasting model according to the attacker's intent. Specifically, BackTime first identifies vulnerable timestamps in the data for poisoning, and then adaptively synthesizes stealthy and effective triggers by solving a bi-level optimization problem with a GNN-based trigger generator. Extensive experiments across multiple datasets and state-of-the-art MTS forecasting models demonstrate the effectiveness, versatility, and stealthiness of \method{} attacks. The code is available at \url{https://github.com/xiaolin-cs/BackTime}.
Abstract:Data collected in the real world often encapsulates historical discrimination against disadvantaged groups and individuals. Existing fair machine learning (FairML) research has predominantly focused on mitigating discriminative bias in the model prediction, with far less effort dedicated towards exploring how to trace biases present in the data, despite its importance for the transparency and interpretability of FairML. To fill this gap, we investigate a novel research problem: discovering samples that reflect biases/prejudices from the training data. Grounding on the existing fairness notions, we lay out a sample bias criterion and propose practical algorithms for measuring and countering sample bias. The derived bias score provides intuitive sample-level attribution and explanation of historical bias in data. On this basis, we further design two FairML strategies via sample-bias-informed minimal data editing. They can mitigate both group and individual unfairness at the cost of minimal or zero predictive utility loss. Extensive experiments and analyses on multiple real-world datasets demonstrate the effectiveness of our methods in explaining and mitigating unfairness. Code is available at https://github.com/ZhiningLiu1998/AIM.
Abstract:Position bias, i.e., users' preference of an item is affected by its placing position, is well studied in the recommender system literature. However, most existing methods ignore the widely coupled ranking bias, which is also related to the placing position of the item. Using both synthetic and industrial datasets, we first show how this widely coexisted ranking bias deteriorates the performance of the existing position bias estimation methods. To mitigate the position bias with the presence of the ranking bias, we propose a novel position bias estimation method, namely gradient interpolation, which fuses two estimation methods using a fusing weight. We further propose an adaptive method to automatically determine the optimal fusing weight. Extensive experiments on both synthetic and industrial datasets demonstrate the superior performance of the proposed methods.
Abstract:The application of mixture-of-experts (MoE) is gaining popularity due to its ability to improve model's performance. In an MoE structure, the gate layer plays a significant role in distinguishing and routing input features to different experts. This enables each expert to specialize in processing their corresponding sub-tasks. However, the gate's routing mechanism also gives rise to narrow vision: the individual MoE's expert fails to use more samples in learning the allocated sub-task, which in turn limits the MoE to further improve its generalization ability. To effectively address this, we propose a method called Mixture-of-Distilled-Expert (MoDE), which applies moderate mutual distillation among experts to enable each expert to pick up more features learned by other experts and gain more accurate perceptions on their original allocated sub-tasks. We conduct plenty experiments including tabular, NLP and CV datasets, which shows MoDE's effectiveness, universality and robustness. Furthermore, we develop a parallel study through innovatively constructing "expert probing", to experimentally prove why MoDE works: moderate distilling knowledge can improve each individual expert's test performances on their assigned tasks, leading to MoE's overall performance improvement.
Abstract:Given the enormous number of users and items, industrial cascade recommendation systems (RS) are continuously expanded in size and complexity to deliver relevant items, such as news, services, and commodities, to the appropriate users. In a real-world scenario with hundreds of thousands requests per second, significant computation is required to infer personalized results for each request, resulting in a massive energy consumption and carbon emission that raises concern. This paper proposes GreenFlow, a practical computation allocation framework for RS, that considers both accuracy and carbon emission during inference. For each stage (e.g., recall, pre-ranking, ranking, etc.) of a cascade RS, when a user triggers a request, we define two actions that determine the computation: (1) the trained instances of models with different computational complexity; and (2) the number of items to be inferred in the stage. We refer to the combinations of actions in all stages as action chains. A reward score is estimated for each action chain, followed by dynamic primal-dual optimization considering both the reward and computation budget. Extensive experiments verify the effectiveness of the framework, reducing computation consumption by 41% in an industrial mobile application while maintaining commercial revenue. Moreover, the proposed framework saves approximately 5000kWh of electricity and reduces 3 tons of carbon emissions per day.
Abstract:In this work, we propose FastCoT, a model-agnostic framework based on parallel decoding without any further training of an auxiliary model or modification to the LLM itself. FastCoT uses a size-varying context window whose size changes with position to conduct parallel decoding and auto-regressive decoding simultaneously, thus fully utilizing GPU computation resources. In FastCoT, the parallel decoding part provides the LLM with a quick glance of the future composed of approximate tokens, which could lead to faster answers compared to regular autoregressive decoding used by causal transformers. We also provide an implementation of parallel decoding within LLM, which supports KV-cache generation and batch processing. Through extensive experiments, we demonstrate that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach. Additionally, we show that the context window size exhibits considerable robustness for different tasks.
Abstract:Finding node correspondence across networks, namely multi-network alignment, is an essential prerequisite for joint learning on multiple networks. Despite great success in aligning networks in pairs, the literature on multi-network alignment is sparse due to the exponentially growing solution space and lack of high-order discrepancy measures. To fill this gap, we propose a hierarchical multi-marginal optimal transport framework named HOT for multi-network alignment. To handle the large solution space, multiple networks are decomposed into smaller aligned clusters via the fused Gromov-Wasserstein (FGW) barycenter. To depict high-order relationships across multiple networks, the FGW distance is generalized to the multi-marginal setting, based on which networks can be aligned jointly. A fast proximal point method is further developed with guaranteed convergence to a local optimum. Extensive experiments and analysis show that our proposed HOT achieves significant improvements over the state-of-the-art in both effectiveness and scalability.
Abstract:User-side group fairness is crucial for modern recommender systems, as it aims to alleviate performance disparity between groups of users defined by sensitive attributes such as gender, race, or age. We find that the disparity tends to persist or even increase over time. This calls for effective ways to address user-side fairness in a dynamic environment, which has been infrequently explored in the literature. However, fairness-constrained re-ranking, a typical method to ensure user-side fairness (i.e., reducing performance disparity), faces two fundamental challenges in the dynamic setting: (1) non-differentiability of the ranking-based fairness constraint, which hinders the end-to-end training paradigm, and (2) time-inefficiency, which impedes quick adaptation to changes in user preferences. In this paper, we propose FAir Dynamic rEcommender (FADE), an end-to-end framework with fine-tuning strategy to dynamically alleviate performance disparity. To tackle the above challenges, FADE uses a novel fairness loss designed to be differentiable and lightweight to fine-tune model parameters to ensure both user-side fairness and high-quality recommendations. Via extensive experiments on the real-world dataset, we empirically demonstrate that FADE effectively and efficiently reduces performance disparity, and furthermore, FADE improves overall recommendation quality over time compared to not using any new data.