Abstract:Sequential recommenders are crucial to the success of online applications, \eg e-commerce, video streaming, and social media. While model architectures continue to improve, for every new application domain, we still have to train a new model from scratch for high quality recommendations. On the other hand, pre-trained language and vision models have shown great success in zero-shot or few-shot adaptation to new application domains. Inspired by the success of pre-trained models in peer AI fields, we propose a novel pre-trained sequential recommendation framework: PrepRec. We learn universal item representations by modeling item popularity dynamics. Through extensive experiments on five real-world datasets, we show that PrepRec, without any auxiliary information, can not only zero-shot transfer to a new domain, but achieve competitive performance compared to state-of-the-art sequential recommender models with only a fraction of the model size. In addition, with a simple post-hoc interpolation, PrepRec can improve the performance of existing sequential recommenders on average by 13.8\% in Recall@10 and 29.5% in NDCG@10. We provide an anonymized implementation of PrepRec at https://anonymous.4open.science/r/PrepRec--2F60/
Abstract:Underwater Sound Speed Profile (SSP) distribution has great influence on the propagation mode of acoustic signal, thus the fast and accurate estimation of SSP is of great importance in building underwater observation systems. The state-of-the-art SSP inversion methods include frameworks of matched field processing (MFP), compressive sensing (CS), and feedforeward neural networks (FNN), among which the FNN shows better real-time performance while maintain the same level of accuracy. However, the training of FNN needs quite a lot historical SSP samples, which is diffcult to be satisfied in many ocean areas. This situation is called few-shot learning. To tackle this issue, we propose a multi-task learning (MTL) model with partial parameter sharing among different traning tasks. By MTL, common features could be extracted, thus accelerating the learning process on given tasks, and reducing the demand for reference samples, so as to enhance the generalization ability in few-shot learning. To verify the feasibility and effectiveness of MTL, a deep-ocean experiment was held in April 2023 at the South China Sea. Results shows that MTL outperforms the state-of-the-art methods in terms of accuracy for SSP inversion, while inherits the real-time advantage of FNN during the inversion stage.
Abstract:Real--time and accurate construction of regional sound speed profiles (SSP) is important for building underwater positioning, navigation, and timing (PNT) systems as it greatly affect the signal propagation modes such as trajectory. In this paper, we summarizes and analyzes the current research status in the field of underwater SSP construction, and the mainstream methods include direct SSP measurement and SSP inversion. In the direct measurement method, we compare the performance of popular international commercial temperature, conductivity, and depth profilers (CTD). While for the inversion methods, the framework and basic principles of matched field processing (MFP), compressive sensing (CS), and deep learning (DL) for constructing SSP are introduced, and their advantages and disadvantages are compared. The traditional direct measurement method has good accuracy performance, but it usually takes a long time. The proposal of SSP inversion method greatly improves the convenience and real--time performance, but the accuracy is not as good as the direct measurement method. Currently, the SSP inversion relies on sonar observation data, making it difficult to apply to areas that couldn't be covered by underwater observation systems, and these methods are unable to predict the distribution of sound velocity at future times. How to comprehensively utilize multi-source data and provide elastic sound velocity distribution estimation services with different accuracy and real-time requirements for underwater users without sonar observation data is the mainstream trend in future research on SSP construction.
Abstract:Modern neural collaborative filtering techniques are critical to the success of e-commerce, social media, and content-sharing platforms. However, despite technical advances -- for every new application domain, we need to train an NCF model from scratch. In contrast, pre-trained vision and language models are routinely applied to diverse applications directly (zero-shot) or with limited fine-tuning. Inspired by the impact of pre-trained models, we explore the possibility of pre-trained recommender models that support building recommender systems in new domains, with minimal or no retraining, without the use of any auxiliary user or item information. Zero-shot recommendation without auxiliary information is challenging because we cannot form associations between users and items across datasets when there are no overlapping users or items. Our fundamental insight is that the statistical characteristics of the user-item interaction matrix are universally available across different domains and datasets. Thus, we use the statistical characteristics of the user-item interaction matrix to identify dataset-independent representations for users and items. We show how to learn universal (i.e., supporting zero-shot adaptation without user or item auxiliary information) representations for nodes and edges from the bipartite user-item interaction graph. We learn representations by exploiting the statistical properties of the interaction data, including user and item marginals, and the size and density distributions of their clusters.
Abstract:We present InfoMotif, a new semi-supervised, motif-regularized, learning framework over graphs. We overcome two key limitations of message passing in popular graph neural networks (GNNs): localization (a k-layer GNN cannot utilize features outside the k-hop neighborhood of the labeled training nodes) and over-smoothed (structurally indistinguishable) representations. We propose the concept of attributed structural roles of nodes based on their occurrence in different network motifs, independent of network proximity. Two nodes share attributed structural roles if they participate in topologically similar motif instances over co-varying sets of attributes. Further, InfoMotif achieves architecture independence by regularizing the node representations of arbitrary GNNs via mutual information maximization. Our training curriculum dynamically prioritizes multiple motifs in the learning process without relying on distributional assumptions in the underlying graph or the learning task. We integrate three state-of-the-art GNNs in our framework, to show significant gains (3-10% accuracy) across six diverse, real-world datasets. We see stronger gains for nodes with sparse training labels and diverse attributes in local neighborhood structures.
Abstract:This paper addresses the question of identifying the best candidate answer to a question on Community Question Answer (CQA) forums. The problem is important because Individuals often visit CQA forums to seek answers to nuanced questions. We develop a novel induced relational graph convolutional network (IR-GCN) framework to address the question. We make three contributions. First, we introduce a modular framework that separates the construction of the graph with the label selection mechanism. We use equivalence relations to induce a graph comprising cliques and identify two label assignment mechanisms---label contrast, label sharing. Then, we show how to encode these assignment mechanisms in GCNs. Second, we show that encoding contrast creates discriminative magnification---enhancing the separation between nodes in the embedding space. Third, we show a surprising result---boosting techniques improve learning over familiar stacking, fusion, or aggregation approaches for neural architectures. We show strong results over the state-of-the-art neural baselines in extensive experiments on 50 StackExchange communities.